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Abstract

A community diagnostics and performance metrics tool for the evaluation of Earth Sys-
tem Models (ESMs) has been developed that allows for routine comparison of sin-
gle or multiple models, either against predecessor versions or against observations.
The priority of the effort so far has been to target specific scientific themes focusing
on selected Essential Climate Variables (ECVs), a range of known systematic biases
common to ESMs, such as coupled tropical climate variability, monsoons, Southern
Ocean processes, continental dry biases and soil hydrology-climate interactions, as
well as atmospheric CO, budgets, tropospheric and stratospheric ozone, and tropo-
spheric aerosols. The tool is being developed in such a way that additional analyses
can easily be added. A set of standard namelists for each scientific topic reproduces
specific sets of diagnostics or performance metrics that have demonstrated their im-
portance in ESM evaluation in the peer-reviewed literature. The Earth System Model
Evaluation Tool (ESMValTool) is a community effort open to both users and developers
encouraging open exchange of diagnostic source code and evaluation results from the
CMIP ensemble. This will facilitate and improve ESM evaluation beyond the state-of-
the-art and aims at supporting such activities within the Coupled Model Intercompari-
son Project (CMIP) and at individual modelling centres. Ultimately, we envisage running
the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more
routine evaluation of CMIP model simulations while utilizing observations available in
standard formats (obs4MIPs) or provided by the user.

1 Introduction

Earth System Model (ESM) evaluation with observations or reanalyses is performed
both to understand the performance of a given model and to gauge the quality of a new
model, either against predecessor versions or a wider set of models. Over the past
decades, the benefits of multi-model intercomparison projects such as the Coupled
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Model Intercomparison Project (CMIP) have been demonstrated. Since the beginning
of CMIP in 1995, participating models have been further developed, with more com-
plex and higher resolution models joining in CMIP5 (Taylor et al., 2012) which sup-
ported the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Re-
port (AR5) (IPCC, 2013). The main purpose of these internationally coordinated model
experiments is to address outstanding scientific questions, to improve the understand-
ing of climate, and to provide estimates of future climate change. Standardization of
model output in a format that follows the netCDF Climate and Forecast (CF) Metadata
Convention (http://cfconventions.org/) and collection of the model output on the Earth
System Grid Federation (ESGF, http://esgf.linl.gov/) facilitated multi-model analyses.
However, CMIP has historically lacked a common analysis tool available that could op-
erate directly on submitted model data and deliver a standard evaluation of models
against observations.

An important new aspect for CMIP6 is a more distributed organization under the over-
sight of the CMIP Panel, where a set of standard model experiments, which were com-
mon across earlier CMIP cycles, the Diagnostic, Evaluation and Characterization of
Klima (DECK) experiments and the CMIP6 Historical Simulation will be used to broadly
characterize model performance and sensitivity to standard external forcing. Standard-
ization, coordination, common infrastructure, and documentation functions that make
the simulation results and their main characteristics available to the broader community
are envisaged to be a central part of CMIP6 (Meehl et al., 2014). The Earth System
Model eValuation Tool (ESMValTool) presented here is a community development that
can be used as one of the documentation functions in CMIP to help diagnose and un-
derstand the origin and consequences of model biases and inter-model spread. Our
goal is to develop an evaluation tool that users can run to produce well-established
analyses of the CMIP models once the output becomes available on the ESGF. This is
realized through text files that we refer to as standard namelists that each call a certain
set of diagnostics and performance metrics to reproduce analyses that have demon-
strated to be of importance in ESM evaluation in previous peer-reviewed papers or as-
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sessment reports. Through this approach routine and systematic evaluation of model
results can be made more efficient. The framework enables scientists to focus on de-
veloping more innovative analysis methods rather than constantly having to “re-invent
the wheel”. An additional purpose of the ESMValTool is to facilitate model evaluation at
individual modelling centres, in particular to rapidly assess the performance of a new
model against predecessor versions. Righi et al. (2015) and Jockel et al. (2015) have
applied a subset of the namelists presented here to evaluate a set of simulations using
different configurations of the global ECHAM/MESSy Atmospheric Chemistry model
(EMAC). In this paper we also highlight the integration of ESMValTool into modelling
workflows — including models developed at NOAA’s Geophysical Fluid Dynamics Lab-
oratory (GFDL), the EMAC model, and the NEMO ocean model — through the use of
ESMValTool’s reformatting routine capabilities.

In addition to standardized model output, the ESGF hosts observations for Model
Intercomparison Projects (obs4MIPs, Teixeira et al., 2014) and reanalyses data
(ana4MIPs, https://www.earthsystemcog.org/projects/ana4mips). The obs4MIP and
ana4MIP projects provide the community with access to CMIP-like data sets (in terms
of variables, temporal and spatial frequencies, and time periods) of satellite data and
reanalyses, together with the corresponding technical documentation. The ESMValTool
makes use of these observations as well as observations available from other sources
to evaluate the models. In several of the diagnostics and metrics, more than one ob-
servational data set or meteorological reanalysis is used to account for uncertainties
in observations. This is crucial for assessing model performance in a more robust and
scientifically valid way.

For the model evaluation we apply diagnostics and in several cases also perfor-
mance metrics. Diagnostics (e.g., the calculation of zonal means or derived variables
in comparison to observations) provide a qualitative comparison of the models with
observations. Performance metrics are defined as a quantitative measure of agree-
ment between a simulated and observed quantity which can be used to assess the
performance of individual models or generation of models. Quantitative performance
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metrics are routinely calculated for numerical weather forecast models, but have been
increasingly applied to Atmosphere—Ocean General Circulation Models (AOGCMs) or
ESMs. Performance metrics used in these studies have mainly focused on climatolog-
ical mean values of selected ECVs (Connolley and Bracegirdle, 2007; Gleckler et al.,
2008; Pincus et al., 2008; Reichler and Kim, 2008; Schmittner et al., 2005), and only
a few studies have developed process-based performance metrics (SPARC-CCMVal,
2010; Waugh and Eyring, 2008; Williams and Webb, 2009). The implementation of
performance metrics in the ESMValTool enables a quantitative assessment of model
improvements, both for different versions of individual ESMs and for different genera-
tions of model ensembles used in international assessments (e.g., CMIP5 vs. CMIP6).
Application of performance metrics to multiple models helps highlighting when and
where one or a few models represent a particular process well. While quantitative met-
rics provide a valuable summary of overall model performance, they usually do not give
information on how particular aspects of a model’s simulation interact to determine the
overall fidelity. For example, a model could simulate a mean state (and trend) in global
mean surface temperature that agrees well with observations, but this could be due
to compensating errors. To learn more about the sources of errors and uncertainties
in models and thereby highlight specific areas requiring improvement, evaluation of
the underlying processes and phenomena is necessary. A range of diagnostics and
performance metrics focussing on a number of key processes are also included in
ESMValTool.

This paper describes ESMValTool version 1.0 (v1.0) which is the first release of the
tool to the wider community for application and further development as open source
software. It demonstrates use of the tool by showing example figures for each namelist
for either all or a subset of CMIP5 models. Section 2 describes the technical aspects of
the tool, and Sect. 3 the type of modelling and observational data currently supported
by ESMValTool (v1.0). In Sect. 4 an overview of the namelists of ESMValTool (v1.0)
is given along with their diagnostics and performance metrics and the variables and
observations used. Section 5 describes the use of the ESMValTool in a typical model
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development cycle and evaluation workflow and Sect. 6 closes with a summary and an
outlook.

2 Brief overview of the ESMValTool

In this section we give a brief overview of ESMValTool (v1.0) which is schematically
depicted in Fig. 1. A detailed user’s guide is provided in the Supplement.

The ESMValTool consists of a workflow manager and a number of diagnostic
and graphical output scripts. It builds on a previously published diagnostic tool for
chemistry-climate model evaluation (CCMVal-Diag Tool, Gettelman et al., 2012), but
is different in its focus. In particular, it extends to ESMs by including diagnostics and
performance metrics relevant for the coupled Earth system, and also focuses on eval-
uating models with a common set of diagnostics rather than being mostly flexible as
the CCMVal-Diag tool. In addition, several technical and structural changes have been
made that facilitate development by multiple users. The workflow manager is written in
Python, while a multi-language support is provided in the diagnostic and the graphic
routines. The current version supports Python, NCL and R, but it can be extended to
other open-source languages. The ESMValTool is executed by invoking the main.py
script, which takes a namelist as a single input argument. The namelists are text files
written using the XML (eXtensible Markup Language) syntax and define the data to be
read (models and observations), the variables to be analysed and the diagnostics to
be applied. The XML-syntax has been chosen in order to allow users to express the
relationship between these three elements (data, variables and diagnostics) in a struc-
tured, easy to use way.

Within the workflow, the input data are checked for compliance with the CF and Cli-
mate Model Output Rewriter (CMOR, http://pcmdi.github.io/cmor-site/tables.html) stan-
dards required by the tool (see Sect. 3) via a set of dedicated reformatting routines,
which are also able to fix the most common errors in the input data (e.g., wrong coordi-
nates, undefined or missing values, non-compliant units, etc.). It is additionally possible
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to define new variables using variable-specific scripts, for example in order to calculate
the total column ozone from a 3-D ozone field (tro3), temperature (ta) and surface pres-
sure (psl). The diagnostic and graphic routines are written in a modular and flexible way
so that they can be customized by the user via diagnostic-specific settings in the con-
figuration file (cfg-file) and variable-specific settings (in the directory variable_def_dir)
without changing the source code of the workflow manager. These routines are com-
plemented by a set of libraries, providing general-purpose code for the most common
operations (statistical analyses, regridding tools, graphic styles, etc.). The output of the
tool can be both netCDF and graphics files in various formats. In addition, a log file is
written containing all the information of a specific call of the main script: creation date
of running the script, version number, analysed data (models and observations), ap-
plied diagnostics and variables, and corresponding references. This helps to increase
the traceability and reproducibility of the results.

To facilitate the development of new namelists and diagnostics by multiple develop-
ers from various institutions while preserving code quality and reliability, an automated
testing framework is included in the package. This allows the developers to verify that
modifications and new code are compatible with the existing code and do not change
the results of existing diagnostics. For the documentation of the code, Sphinx is used
(http://sphinx-doc.org/). The documentation includes a listing of the functions, proce-
dures, and plotting routines in order to encourage the reuse of existing code in multiple
namelists.

3 Models and observations

The open-source release of ESMValTool (v1.0) that accompanies this paper is intended
to work with CMIP5 model output, but the tool is compatible with any arbitrary model
output, provided that it is in CF-compliant netCDF format and that the variables and
metadata are following the CMOR tables and definitions. The namelists are designed
such that it is straightforward to execute the same diagnostics with either CMIP DECK
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or CMIP6 model output rather than CMIP5 output, and these will be provided when
the new simulations are available. As mentioned in the previous section, routines are
provided for checking CF/CMOR compliance and fixing the most common minor flaws
in the model output submitted to CMIP5. More substantial deviations from the required
standards in the model output may be corrected via project- and model-specific proce-
dures defined by the user and automatically applied within the workflow. The current
reformatting routines are, however, not able to convert arbitrary model output to the
full CF/CMOR standard. In this case, it is the responsibility of the individual modelling
groups to perform that conversion. Currently, model-specific reformatting routines are
provided for EMAC (Jockel et al., 2010, 2015), the GFDL CM3 and ESM models (Don-
ner et al., 2011; Dunne et al., 2012, 2013), and for NEMO (Madec, 2008) which is the
ocean model used in for example EC-Earth (Hazeleger et al., 2012). Users can develop
similar reformatting routines specific to their model using the template included in the
package allowing the tool to run directly on the original model output rather than having
to reformat the model output to CF/CMOR beforehand.

The observations are organized in tiers. Where available, observations from the
obs4MIPs and reanalysis from the ana4MIPs archives at the ESGF are used in the
ESMValTool. These data sets form “Tier 1”. Tier 1 data are freely available for down-
load to be directly used by the tool since they are formatted following the CF/CMOR
standard and do not need any additional processing. For other observational data sets,
the user has to retrieve the data from their respective source and reformat them into the
CF/CMOR standard. To facilitate this task, we provide specific reformatting routines for
a large number of such data sets together with detailed information of the data source,
as well as download and processing instructions (see Table 1). “Tier 2” includes other
freely available data sets and “Tier 3” includes restricted data sets (e.g., requiring the
user to accept a license agreement issued by the data owner). For Tier 2 and 3 data,
links and help scripts are provided, so that these observations can be easily retrieved
from their respective sources and processed by the user. A collection of all observa-
tional data used in ESMValTool (v1.0) is hosted at DLR and the ESGF nodes at BADC
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and DKRZ, but depending on the license terms of the observations these might not be
publicly available.

4 Overview of namelists included in ESMValTool (v1.0)

A number of namelists have been included in ESMValTool (v1.0) that group a set of
performance metrics and diagnostics for a given scientific topic. Namelists that focus
on the evaluation of physical climate process for respectively, the atmosphere, ocean,
and land surface are presented in Sects. 4.1, 4.2, and 4.3. These can be applied to
simulations with prescribed SSTs (i.e., AMIP runs) or the CMIP5 historical simulations
(simulations for 1850 to present-day conducted with the best estimates of natural and
anthropogenic climate forcing) that are run by either coupled AOGCMs or ESMs. An-
other set of namelists has been developed to evaluate biogeochemical biases present
in ESMs when additional components of the Earth system such as the carbon cycle,
atmospheric chemistry or aerosols are simulated interactively (Sects. 4.4 and 4.5 for
carbon cycle and aerosols/chemistry, respectively).

In each subsection, we first scientifically motivate the inclusion of the namelist by
reviewing the main systematic biases in current ESMs and their importance and impli-
cations. We then give an overview of the namelists that can be used to evaluate such
biases along with the diagnostics and performance metrics included, and the required
variables and corresponding observations that are used in ESMValTool (v1.0). For each
namelist we provide 1-2 example figures that are applied to either all or a subset of
the CMIP5 models. An assessment of CMIP5 models is however not the focus of this
paper. Rather, we attempt to illustrate how the namelists contained within ESMValTool
(v1.0) can facilitate the development and evaluation of climate model performance in
the targeted areas. Therefore, the results of each figure are only briefly described in
each figure caption.

Table 1 provides a summary of all namelists included in ESMValTool (v1.0) along with
information on the quantities and ESMValTool variable names for which the namelist is
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tested, the corresponding observations or reanalyses, the section and example figure
in this paper, and references for the namelist. Table 2 then provides an overview of the
diagnostics included for each namelist along with specific calculations, the plot type,
settings in the configuration file (cfg-file), and comments.

4.1 Detection of systematic biases in the physical climate: atmosphere
4.1.1 Quantitative performance metrics for atmospheric ECVs

A starting point for the calculation of performance metrics is to assess the represen-
tation of simulated climatological mean states and the seasonal cycle for essential cli-
mate variables (ECVs, GCOS, 2010). This is supported by a large observational effort
to deliver long-term, high quality observations from different platforms and instruments
(e.g., obs4MIPs and the ESA Climate Change Initiative (CCI)) and ongoing efforts to
improve global reanalysis products (e.g., ana4MIPs).

Following Gleckler et al. (2008) and similar to Fig. 9.7 of Flato et al. (2013),
a namelist has been implemented in the ESMValTool that produces a “portrait di-
agram” by calculating the relative space—time root-mean square error (RMSE) from
the climatological mean seasonal cycle of historical simulations for selected variables
(namelist_perfmetrics_CMIP5.xml). In Fig. 2 the relative space—-time RMSE for the
CMIPS5 historical simulations (1980-2005) against a reference observation and, where
available, an alternate observational data set, is shown. The code allows comparison of
up to four observational data sets. The overall mean bias can additionally be calculated
and adding other statistical metrics like the PDF-Skill Score introduced in Sect. 4.4.1
is straightforward. Different normalizations (mean, median, centered median) can be
chosen and the multi model mean/median can also be added. With this namelist it is
also possible to perform more in-depth analyses of the ECVs, by calculating seasonal
cycles, Taylor diagrams (Taylor, 2001), zonally averaged vertical profiles and latitude—
longitude maps. In the latter two cases, it is also possible to produce difference plots
between a given model and a reference (usually the observational data set) or between
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two versions of the same model, and to apply a statistical test to highlight significant
differences. As an example, Fig. 3 (left panel) shows the zonal profile of seasonal mean
temperature differences between the MPI-ESM-LR model (Giorgetta et al., 2013) and
ERA-Interim reanalysis (Dee et al., 2011), and Fig. 3 (right panel) a Taylor diagram for
temperature at 850 hPa for CMIP5 models compared to ERA-Interim. A similar analy-
sis can be performed with namelist_righi15gmd_ECVs.xml, which reproduces the ECV
plots of Righi et al. (2015) for a set of EMAC simulations.

Tested variables in ESMValTool (v1.0) that are shown is Fig. 2 are selected levels
of temperature (ta), eastward (ua) and northward wind (va), geopotential height (zg),
and specific humidity (hus), as well as near-surface air temperature (tas), precipitation
(pr), all-sky longwave (rlut) and shortwave (rsut) radiation, long-wave (LW_CRE) and
shortwave (SW_CRE) cloud radiative effect, and aerosol optical depth (AOD) at 550 nm
(od550aer). The models are evaluated against a wide range of observations and re-
analysis data: ERA-Interim and NCEP (Kistler et al., 2001) for temperature, winds and
geopotential height, AIRS (Aumann et al., 2003) for specific humidity, CERES-EBAF for
radiation (Wielicki et al., 1996), Global Precipitation Climatology Project (GPCP, Adler
et al., 2003) for precipitation, Moderate Resolution Imaging Spectrometer (MODIS, Shi
et al., 2011) and the ESA CCI aerosol data (Kinne et al., 2015) for AOD. Additional
observations or reanalyses can be provided by the user for these variables and easily
added. The tool can also be applied to additional variables if the required observations
are made available in an ESMValTool compatible format (see Sect. 2 and Supplement).

4.1.2 Multi-model mean bias for temperature and precipitation

Near-surface air temperature (tas) and precipitation (pr) are the two variables most
commonly requested by users of ESM simulations. Often, diagnostics for tas and pr
are shown for the multi-model mean of an ensemble. Both of these variables are the
end result of numerous interacting processes in the models, making it challenging to
understand and improve biases in these quantities. For example, near surface air tem-
perature biases depend on the models’ representation of radiation, convection, clouds,
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land characteristics, surface fluxes, as well as atmospheric circulation and turbulent
transport Flato et al. (2013), each with their own potential biases that may either aug-
ment or oppose one another.

The namelist_flato13ipcc.xml reproduces a subset of the figures from the climate
model evaluation chapter of IPCC AR5 (Chapter 9, Flato et al., 2013). This namelist
will be further developed and a more complete version included in future releases. The
diagnostic that calculates the multi-model mean bias compared to a reference data set
is part of this namelist and reproduces Figs. 9.2 and 9.4 of Flato et al. (2013). Fig-
ure 4 shows the CMIP5 multi-model average as absolute values and as biases relative
to ERA-Interim and the GPCP data for the annual mean surface air temperature and
precipitation, respectively. Model output is linearly regridded to the reanalysis or ob-
servational grid by default, but alternative options that can be set in the cfg-file include
regridding of the data to the lowest or highest resolution grid in the entire input data
set. Such figures can also be produced for individual seasons as well as for a single
model simulation or other 2-D variables if suitable observations are provided.

4.1.3 Monsoon

Monsoon systems represent the dominant seasonal climate variation in the tropics,
with profound socio-economic impacts. Current ESMs still struggle to capture the major
features of both the South Asian summer monsoon (SASM, Sect. “South Asian sum-
mer monsoon (SASM)”) and the West African monsoon (WAM, Sect. “West African
monsoon diagnostics”). Sperber et al. (2013) and Roehrig et al. (2013) provide com-
prehensive assessments of the ability of CMIP5 models to represent these two mon-
soon systems. By implementing diagnostics from these two studies into ESMValTool
(v1.0), we aim to facilitate continuous monitoring of progress in simulating the SASM
and WAM systems in ESMs.
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South Asian summer monsoon (SASM)

While individual models vary in their simulations of the SASM, there are known bi-
ases in ESMs that span a range of temporal and spatial scales. The namelists in the
ESMValTool are targeted toward analysing these biases in a systematic way. Climato-
logical mean biases include excess precipitation over the equatorial Indian Ocean, too
little precipitation over the Indian subcontinent and excess precipitation over orography
such as the southern slopes of the Himalayas (Annamalai et al., 2007; Bollasina and
Nigam, 2009; Sperber et al., 2013), see also Fig. 4. The monsoon onset is typically too
late in the models, and the boreal summer intra-seasonal oscillation (BSISO), which
has a particularly large socio-economic impact in South Asia, is often weak or not
present (Sabeerali et al., 2013). Monsoon low pressure systems, which generate many
of the most intense rain events during the monsoon (Krishnamurthy and Misra, 2011)
are often too infrequent and weak (Stowasser et al., 2009). In coupled models, biases
in SSTs, evaporation, precipitation and air—sea coupling are common (Bollasina and
Nigam, 2009) and have been shown to affect both present-day simulations and future
projections (Levine et al., 2013). Interannual teleconnections with ENSO (Lin et al.,
2008) and the Indian Ocean Dipole (Ashok et al., 2004; Cherchi and Navarra, 2013)
are also not well-captured (Turner et al., 2005).

Three SASM namelists for the basic climatology, seasonal cycle, intra-seasonal
and inter-annual variability and key teleconnections have been implemented
into the ESMValTool focusing on SASM rainfall and horizontal winds in June—
September (JJAS) (namelist_ SAMonsoon.xml, namelist_ SAMonsoon_AMIP.xml,
namelist_ SAMonsoon_daily.xml). Rainfall and wind climatologies, including their
pattern correlations and RMSE against observations, are similar to the metrics
proposed by the Climate Variability and Predictability (CLIVAR) Asian—Australian
Monsoon Panel (AAMP) Diagnostics Task Team and used by Sperber et al. (2013).
Diagnostics for determining global monsoon domains and intensity follow the definition
of Wang et al. (2012) where the global precipitation intensity is calculated from

7554

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the difference between the hemispheric summer (May—September in the Northern
Hemisphere, November—March in the Southern Hemisphere) and winter (vice versa)
mean values, and the global monsoon domain is defined by those areas where
the precipitation intensity exceeds 2.0 mmday‘1 and the summer precipitation is
> 0.55 x the annual precipitation (Fig. 5). Seasonal cycle diagnostics include monthly
rainfall over the Indian region (5-30°N, 65-95°E) and dynamical indices based on
wind-shear (Goswami et al., 1999; Wang and Fan, 1999; Webster and Yang, 1992).
Figure 6 shows examples of the seasonal cycle of area-averaged Indian rainfall
from selected CMIP5 models and their AMIP counterparts. The namelists include
diagnostics to calculate maps of inter-annual standard deviation of JJAS rainfall
and horizontal winds at 850 and 200 hPa, and maps of teleconnection diagnostics
between Nino3.4 SSTs (defined by the region 190-240°E, 5°S to 5°N) and JJAS
precipitation across the monsoon region (30° S to 30° N, 40-300° E) following (Sperber
et al., 2013). For atmosphere-only models, we also evaluate their ability to represent
year to year monsoon variability directly against time-equivalent observations to see
if models, given correct inter-annual SST forcing, can reproduce observed year to
year variations and significant events occurring in particular years. This evaluation
is done by plotting the time-series across specified years of standardized anomalies
(normalized by climatology) of JJAS-averaged dynamical indices and area-averaged
JJAS precipitation over the Indian region (defined above) for both the models and
observations. Namelists for intra-seasonal variability include maps of standard devi-
ation of 30-50 day filtered daily rainfall, with area-averaged values for key regions
including the Bay of Bengal (10-20° N, 80-100° E) and the Eastern equatorial Indian
Ocean (10°S-10°N, 80-100°E) given in the plot titles. To illustrate the northward
and eastward propagation of the BSISO, Hovmédller lag-longitude and lag-latitude
diagrams show either the latitude-averaged (10° S—10° N) and plotted for 60—160° E, or
longitude-averaged (80—-100° E) and plotted for 10° S—30° N, anomalies of 30—80 day
filtered daily rainfall correlated against intraseasonal precipitation at the Indian Ocean
reference point (75-100° E, 10° S-5°N). These use a slightly modified (for season,
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region and filtering band) version of the existing Madden—Julian Oscillation (MJO)
scripts, available at https://www.ncl.ucar.edu/Applications/mjoclivar.shtml, that are
based on the recommendations from the US CLIVAR MJO Working Group (Waliser
et al., 2009) and are similar to those shown in Lin et al. (2008) and used in Sect. 4.1.4,
“Madden—Julian oscillation (MJO)” for the MJO.

Tested variables in ESMValTool (v1.0), some of which are illustrated in Figs. 5 and 6,
include precipitation (pr), eastward (ua) and northward wind (va) at various levels, and
skin temperature (ts). The primary reference data sets are ERA-Interim for horizontal
winds, Tropical Rainfall Measuring Mission 3B43 version 7 (TRMM-3B43-v7; Huffman
et al. (2007) for rainfall and HadISST (Rayner et al., 2003) for SST, although the models
are evaluated against a wide range of other observational precipitation data sets (see
Table 1) and an alternate reanalyses data set: the Modern-Era Retrospective Analysis
for Research and Applications (MERRA; Rienecker et al., 2011).

West African monsoon diagnostics

West Africa and the Sahel are highly dependent on seasonal rainfall associated with
the WAM. Rainfall in the region exhibits strong inter-decadal variability (Nicholson et al.,
2000), with major socio-economic impacts (Held et al., 2005). Projecting the future re-
sponse of the WAM to increasing concentrations of greenhouse gases (GHG) is there-
fore of critical importance, as is the ability to make dependable forecasts of the WAM
evolution on monthly to seasonal timescales. Current ESMs exhibit biases in their rep-
resentation of both the mean state (Cook and Vizy, 2006; Roehrig et al., 2013) and
temporal variability (Biasutti, 2013) of WAM. Such biases can affect the skill of monthly
to seasonal predictions of the WAM as well as long term future projections. CMIP5
coupled models often exhibit warm SST biases in the equatorial Atlantic, which induce
a southward shift of the WAM in summer (Richter et al., 2014). Because of the zonal
symmetry, the 10° W-10° E meridional transect of any geophysical variable (see be-
low) is particularly informative with respect to the main features of the WAM and their
representation in climate models (Redelsperger et al., 2006). For instance, the JUAS-

7556

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
https://www.ncl.ucar.edu/Applications/mjoclivar.shtml

10

15

20

25

averaged Sahel rainfall has a large inter-model spread with biases ranging between
+50 % of the observed value (Cook and Vizy, 2006; Roehrig et al., 2013). Differences
in simulated surface air temperatures are large over the Sahel and Sahara, with defi-
ciencies in the Saharan heat low inducing feedback errors on the WAM structure. Here,
a correct simulation of the surface energy balance is critical, where biases related to
the representation of clouds, aerosols and surface albedo (Roehrig et al., 2013). The
seasonal cycle also shows large inter-model spread, pointing to deficiencies in the
representation of key processes important for the seasonal dynamics of the WAM.
Daily precipitation is highly intermittent over the Sahel, mainly caused by a few intense
mesoscale convective systems during the monsoon season (Mathon et al., 2002). In-
tense mesoscale convective systems over Africa as well as the diurnal cycle of the
WAM are still a challenge for most climate models (Roehrig et al., 2013). Improving the
quality of the WAM in climate models is therefore urgently needed.

To evaluate key aspects of the WAM, two namelists have been implemented into ES-
MValTool (v1.0) (namelist_ WAMonsoon.xml, namelist WAMonsoon_daily.xml). These
include maps and meridional transects (averages over 10°W to 10°E) that provide
a climatological picture of the summer (JUJAS) WAM structure: (i) precipitation (pr) for
the mean position of the WAM, (ii) near-surface air temperature (tas) for biases in the
Atlantic cold tongue and the Saharan heat low, (iii) horizontal winds (ua, va) for the
mean position and intensity of the monsoon flow at 925 hPa and of the mid- (700 hPa)
and upper-level (200 hPa) jets. The surface and top of the atmosphere (TOA) radiation
budgets provide a picture of the radiative fluxes associated with the WAM. Figure 7
shows the meridional transect of summer-averaged precipitation over West Africa for
a range of CMIP5 models as an example for this namelist. Diagnostic for the mean sea-
sonal cycle of precipitation is also provided to evaluate the WAM onset and withdrawal.
Finally, a set of diagnostics for the WAM intra-seasonal variability evaluates the ability
of models to capture variability of precipitation on timescales associated with African
easterly waves (3—10 days), the MJO (25-90 days) and more broadly the WAM intra-
seasonal variability (1-90 days). The strong day-to-day intermittency of precipitation
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is also diagnosed using maps of 1 day autocorrelation of intra-seasonal precipitation
anomalies (Roehrig et al., 2013). Observations for evaluation are based on the follow-
ing data sets: GPCP version 2.2 and Tropical Rainfall Measuring Mission 3B43 version
7 (TRMM-3B43-v7, Huffman et al., 2007) precipitation retrievals, Clouds and Earth’s
Radiant Energy Systems (CERES) Energy Balanced and Filled (EBAF) edition 2.6 ra-
diation estimates (Loeb et al., 2009), NOAA daily TOA outgoing longwave radiation
(Liebmann and Smith, 1996), ERA-Interim reanalysis for the dynamics.

4.1.4 Natural modes of climate variability
NCAR climate variability diagnostics package

Modes of natural climate variability from interannual to multi-decadal time scales are
important as they have large impacts on regional and even global climate with at-
tendant socio-economic impacts. Characterization of internal (i.e., unforced) climate
variability is also important for the detection and attribution of externally-forced climate
change signals (Deser et al., 2012, 2014). Internally-generated modes of variability
also complicate model evaluation and intercomparison. As these modes are sponta-
neously generated, they need not exhibit the same chronological sequence in mod-
els as in nature. However, their statistical properties (e.g., time scale, autocorrelation,
spectral characteristics, and spatial patterns) are captured to varying degrees of skill
among climate models. Despite their importance, systematic evaluation of these modes
remains a daunting task given the wide range to consider, the length of the data record
needed to adequately characterize them, the importance of sub-surface oceanic pro-
cesses and uncertainties in the observational records (Deser et al., 2010).

In order to assess natural modes of climate variability in models, the NCAR Climate
Variability Diagnostics Package (CVDP) (Phillips et al., 2014) has been implemented
into the ESMValTool. The CVDP has been developed as a standalone tool. To allow for
easy updating of the CVDP once a new version is released, the structure of the CVDP
is kept in its original form and a single namelist (namelist_CVDP.xml) has been written
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to enable the CVDP to be run directly within ESMValTool. The CVDP facilitates evalua-
tion of the major modes of climate variability, including ENSO (Deser et al., 2010), PDO
(Deser et al., 2010; Mantua et al., 1997), the Atlantic Multi-decadal Oscillation (AMO,
Trenberth and Shea, 2006), the Atlantic Meridional Overturning Circulation (AMOC,
Danabasoglu et al., 2012), and atmospheric teleconnection patterns such as the North-
ern and Southern Annular Modes (NAM, Hurrell and Deser, 2009; Thompson and Wal-
lace, 2000; and SAM, Thompson and Wallace, 2000, respectively), North Atlantic Os-
cillation (NAO, Hurrell and Deser, 2009), and Pacific North and South American (PNA
and PSA, respectively, Thompson and Wallace, 2000) patterns. For details on the ac-
tual calculation of these modes in CVDP we refer to the original CVDP package and
explanations available at http://www2.cesm.ucar.edu/working-groups/cvcwg/cvdp.

Depending on the climate mode analyzed, the CVDP package uses the following
variables: precipitation (pr), sea level pressure (psl), near-surface air temperature (tas),
skin temperature (ts), snow depth (snd), and basin-average ocean meridional overturn-
ing mass streamfunction (msftmyz). The models are evaluated against a wide range of
observations and reanalysis data, for example NCEP for near-surface air temperature,
HadISST for skin temperature, and the NOAA-CIRES Twentieth Century Reanalysis
Project (Compo et al., 2011) for sea level pressure. Additional observations or reanal-
ysis can be added by the user for these variables. The ESMValTool (v1.0) namelist
runs on all CMIP5 models. As an example, Fig. 8 shows the representation of the PDO
as simulated by 41 CMIP5 models and observations (HadlISST) and Fig. 9 the mean
AMOC from 15 CMIP5 models.

Madden-Julian oscillation (MJO)

The MJO is the dominant mode of tropical intraseasonal variability (30-80 days) and
has wide impacts on numerous regional climate and weather phenomena (Madden
and Julian, 1971). Associated with enhanced convection in the tropics, the MJO exerts
a significant influence on monsoon precipitation, e.g. on the South Asian Monsoon
(Pai et al., 2011) and on the west African monsoon (Alaka and Maloney, 2012). The
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eastward propagation of the MJO into the West Pacific can trigger the onset of some
El Nifio events (Feng et al., 2015; Hoell et al., 2014). The MJO also influences tropical
cyclogenesis in various ocean basins (Klotzbach, 2014). Increased vertical resolution
in the atmosphere and better and representation of stratospheric processes have led
to an improvement in MJO fidelity in CMIP5 compared with CMIP3 (Lin et al., 2006).
However, current generation models still struggle to adequately capture the eastward
propagation of the MJO (Hung et al., 2013) and the variance intensity is typically too
weak. ldentifying and reducing such biases will be important for ESMs to accurately
represent important climate phenomena, such as regional precipitation variability in
the tropics arising through the differing impact of MJO phases on ENSO and ENSO
forced regional climate anomalies (Hoell et al., 2014).

To assess the main MJO features in ESMs, a namelist with a number of
diagnostics developed by the US CLIVAR MJO Working Group (Kim et al.,
2009; Waliser et al., 2009) has been implemented in the ESMValTool (v1.0)
(namelist_mjo_mean_state.xml, namelist_mjo_daily.xml). These diagnostics are cal-
culated using precipitation (pr), outgoing longwave radiation (OLR) (rlut), eastward
(ua) and northward wind (va) at 850 hPa (u850) and 200 hPa (u200) against various
observations and reanalysis data sets for boreal summer (May—October) and winter
(November—April).

Observation and reanalysis data sets include GPCP-1DD for precipitation, ERA-
Interim and NCEP-DOE reanalysis 2 for wind components (Kanamitsu et al., 2002) and
NOAA polar-orbiting satellite data for OLR (Liebmann and Smith, 1996). The majority
of the scripts are based on example scripts at hitp://ncl.ucar.edu/Applications/mjoclivar.
shtml. Daily data is required for most of the scripts. The basic diagnostics include mean
seasonal state and 20—100 day bandpass filtered variance for precipitation and u850 in
summer and winter. To better assess and understand model biases in the MJO, a num-
ber of more sophisticated diagnostics have also been implemented. These include;
univariate empirical orthogonal function (EOF) analysis for 20—100 day bandpass fil-
tered daily anomalies of precipitation, OLR, u850 and u200. To illustrate the northward
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and eastward propagation of the MJO, lag-longitude and lag-latitude diagrams show ei-
ther the equatorial (latitude) averaged (10° S—10° N) or zonal (longitude) averaged (80—
100° E) intraseasonal precipitation anomalies and u850 anomalies correlated against
intraseasonal precipitation at the Indian Ocean reference point (75—100° E, 10° S-5° N).
Similar figures can also be produced for other key variables and regions following the
definitions of Waliser et al. (2009). To further explore the MJO intraseasonal variability,
the wavenumber-frequency spectra for each season is calculated for individual vari-
ables. In addition, we also produce cross-spectral plots to quantify the coherence and
phase relationships between precipitation and u850. Figure 10 shows examples of bo-
real summer (May—October) wavenumber-frequency spectra of 10° S—10° N averaged
daily precipitation from GPCP-1DD, HadGEM-ES, MPI-ESM-LR and EC-EARTH. Fi-
nally, we also calculate the multivariate combined EOF (CEOF) modes using equa-
torial averaged (15° S—15° N) daily anomalies of u850, u200 and OLR. This analysis
demonstrates the relationship between lower- and upper-tropospheric wind anomalies
and convection. To further illustrate the spatial-temporal structure of the MJO, the first
two leading CEOFs are used to derive a composite MJO life cycle which highlights
intraseasonal variability and northward/eastward propagation of the MJO.

4.1.5 Diurnal cycle

In addition to the previously discussed biases in precipitation, many ESMs that rely on
parameterized convection exhibit biases related to the diurnal cycle and timing of pre-
cipitation. Over land, ESMs tend to simulate a diurnal cycle of continental convective
precipitation in phase with insolation, while observed precipitation peaks in the early
evening. This constitutes one of the endemic biases of ESMs, in which convective pre-
cipitation intensity is often related to atmospheric instability. This bias can have impor-
tant implications for the simulated climate, as the timing of precipitation influences sub-
sequent surface evaporation, and convective clouds affect radiation differently around
noon or in late afternoon. The biases in the diurnal cycle are most pronounced over
land areas and the diurnal cycles of convection and clouds during the day contribute
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to the continental warm bias (Cheruy et al., 2014). Similarly, biases in the diurnal cycle
also exist over the ocean (Jiang et al., 2015). Another motivation for looking at the diur-
nal cycle in models is that its representation is more closely linked to the parameteriza-
tions of surface fluxes, boundary-layer, convection and cloud processes than any other
diagnostics. The phase of precipitation and radiative fluxes during the day is the con-
sequence of surface warming, boundary-layer turbulence mixing and cumulus clouds
moistening, as well as of the triggering criteria used to activate deep convection, and
the closure used to compute convective intensity. The evaluation of the diurnal cycle
thus provides a direct insight into the representation of physical processes in a model.
Recent efforts to improve the representation of the diurnal cycle of precipitation models
include modifying the convective entrainment rate, revisiting the quasi-equilibrium hy-
pothesis for shallow and deep convection, and adding a representation of key missing
processes such as boundary-layer thermals or cold pools. We envisage that ESMVal-
Tool will help to quantify the impact of those improvements in the next generation of
ESMs.

To help document progress made in the representation of the diurnal cycle of pre-
cipitation (pr) in models, a set of diagnostics has been implemented in ESMValTool.
After regridding all data on a common grid, the mean diurnal cycle computed every
3h is approximated at each grid-point by a sum of sine and cosine functions (first
harmonic analysis) allowing to derive global maps of the amplitude and phase of max-
imum rainfall over the day. Mean diurnal cycle of precipitation is also provided over
specific regions in the tropics. Over land, we contrast semi-arid (Sahel) and humid
(Amazonia) regions as well as West-Africa and India. Over the ocean, we focus on
the Gulf of Guinea, the Indian Ocean and the East and West Equatorial Pacific. We
use TRMM 3B42 V6, as a reference (http://mirador.gsfc.nasa.gov/collections/TRMM_
3B42_daily__006.shtml). ESMValTool also includes diagnostics for the evaluation of
the diurnal cycle of radiative fluxes at the top of the atmosphere and at the surface,
and their decomposition into LW and SW, total and clear-sky components, however
not all are available for all models from the CMIP5 archive. As a reference, we use
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3 hourly SYN1deg CERES products (Wielicki et al., 1996), derived from measurements
at top of the atmosphere and computed using a radiative transfer model at the sur-
face (http://ceres.larc.nasa.gov/products.php?product=SYN1deg). These diagnostics
provide a first insight into the representation of the diurnal cycle, but further analysis is
required to understand the links between the model’s parameterizations and the rep-
resentation of the diurnal cycle, as well as the impact of errors in the diurnal cycle
on other, slower timescale climate processes. Figure 11 shows the evaluation against
TRMM observations of the mean diurnal cycle averaged over specific regions in the
tropics for five summers (2004-2008) simulated by four CMIP5 ESMs.

4.1.6 Clouds
Clouds and radiation

Clouds are a key component of the climate system because of their large impact on the
radiation budget as well as their crucial role in the hydrological cycle. The simulation
of clouds in climate models has been challenging because of the many nonlinear pro-
cesses involved (Boucher et al., 2013). Simulations of long-term mean cloud properties
from CMIP3 and CMIP5 models show large biases compared with observations (Chen
etal.,, 2011; Klein et al., 2013; Lauer and Hamilton, 2013). Such biases have a range of
implications as they affect application of these models to investigate chemistry-climate
interactions and aerosol-cloud interactions, while also having an impact on the climate
sensitivity of the model.

The namelist namelist_lauer13jclim.xml computes the climatology and interannual
variability of climate relevant cloud variables such as cloud radiative forcing, liquid
and ice water path, and cloud cover and reproduces the evaluation results of Lauer
and Hamilton (2013). The standard namelist includes a comparison of the geographi-
cal distribution of multi-year average cloud parameters from individual models and the
multi-model mean with satellite observations. Taylor diagrams are generated that show
the multi-year annual or seasonal average performance of individual models and the
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multi-model mean in reproducing satellite observations. The diagnostic routine also fa-
cilitates the assessment of the bias of the multi-model mean and zonal averages of indi-
vidual models compared with satellite observations. Interannual variability is estimated
as the relative temporal standard deviation from multi-year timeseries of data with the
temporal standard deviations calculated from monthly anomalies after subtracting the
climatological mean seasonal cycle. As an example, Fig. 12 shows the bias of the
20 year average (1986—2005) annual mean cloud radiative effects from CMIP5 models
(multi-model mean) against the CERES EBAF satellite climatology (2001-2012) (Loeb
et al., 2012, 2009), similar to Flato et al. (2013) their Fig. 9.5.

The cloud namelist focuses on precipitation (pr) and four cloud parameters that
largely determine the impact of clouds on the radiation budget and thus climate in
the model simulations: total cloud amount (clt), liquid water path (lwp), ice water path
(iwp), and TOA cloud radiative effect (CRE) consisting of the longwave CRE and short-
wave CRE that can also separately be evaluated with the performance metrics namelist
(see Sect. 4.1.1). Precipitation is evaluated with GPCP data, total cloud amount with
MODIS, liquid water path with passive-microwave satellite observations from the Uni-
versity of Wisconsin (O’Dell et al., 2008), and the ice water path with MODIS Cloud
Model Intercomparison Project (MODIS-CFMIP, Pincus et al., 2012; King et al., 2003)
data.

Quantitative performance assessment of cloud regimes

The cloud-climate radiative feedback process remains one of the largest sources of
uncertainty in determining the climate sensitivity of models (Boucher et al., 2013). Tra-
ditionally, clouds have been evaluated in terms of their impact on the mean top of atmo-
sphere fluxes. However, it is possible to achieve good performance on these quantities
through compensating errors, for example boundary layer clouds may be too reflec-
tive but have insufficient horizontal coverage (Nam et al., 2012). Williams and Webb
(2009) proposed a Cloud Regime Error Metric (CREM) which critically tests the abil-
ity of a model to simulate both the relative frequency of occurrence and the radiative
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properties correctly for a set of cloud regimes determined by the daily mean cloud top
pressure, in-cloud albedo and fractional coverage at each grid-box. Having previously
identified the regimes by clustering joint cloud-top pressure-optical depth histograms
from the International Satellite Cloud Climatology Project (ISCCP, Rossow and Schif-
fer, 1999) as per Williams and Webb (2009), each daily model grid box is assigned
to the regime cluster centroid with the closest cloud top pressure, in-cloud albedo and
fractional coverage as determined by the 3-element Euclidean distance. The fraction of
grid points assigned to each of the regimes and the mean radiative properties of those
grid points are then compared to the observed values.

This metric is now implemented in ESMValTool (v1.0), with references in the
code to tables in the Williams and Webb (2009) study defining the cluster centroids
(namelist_williams09climdyn_CREM.xml). Required are daily data from ISCCP mean
cloud albedo (albisccp), ISCCP Mean Cloud Top Pressure (pctisccp), ISCCP Total To-
tal Cloud Fraction (cltisccp), TOA outgoing short- and long-wave radiation (rsut, rlut),
TOA outgoing shortwave radiation (rlutcs), surface snow area fraction (snc) or surface
snow amount (snw), and sea ice area fraction (sic). The metric has been applied over
the period January 1979 to December 1983 to those CMIP5 models that submitted
the required diagnostics (daily data) for their AMIP simulation (see caption of Fig. 13).
A perfect score with respect to ISCCP would be zero. Williams and Webb (2009) also
compared data from the MODIS and the Earth Radiation Budget Experiment (ERBE,
Barkstrom, 1984) to ISCCP in order to provide an estimate of observational uncer-
tainty. This observational regime characteristic was found to be 0.96 as marked on
Fig. 13 when calculated over the period March 1985 to February 1990. Hence a model
with a score that is similar to this value can be considered to be within observational
uncertainty, although it should be noted that this does not necessarily mean that the
model lies within the observations for each regime. Error bars are not plotted since
experience has shown that the metric has little sensitivity to interannual variability and
models that are visibly different on Fig. 13 are likely to be significantly so. A minimum
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of two years, and ideally five years or more, of daily data are required for the scientific
analysis.

4.2 Detection of systematic biases in the physical climate: ocean
4.2.1 Handling of ocean grids

Analysis of ocean model data from ESMs poses several unique challenges for analysis.
First, in order to avoid numerical singularities in their calculations, ocean models often
use irregular grids where the poles have been rotated or moved to be located over
land areas. For example, the global configuration of the Nucleus for European Mod-
elling of the Ocean (NEMO) framework uses a tripolar grid (Madec, 2008), with the
three poles located over Siberia, Canada and Antarctica. Second, transports of scalar
quantities (e.g., overturning streamfunctions and heat transports) can only be calcu-
lated accurately on the original model grids as interpolation to other grids introduces
errors. This means that, e.g. for the calculation of water transport through a strait, both
the horizontal and vertical extent of the grids on which the v and v currents are defined
is required. Therefore, this type of diagnostic can only be used for models for which
all native grid information is available. State variables like SSTs, sea ice and salinity
are regridded using grid information (i.e., coordinates, bounds, and cell areas) avail-
able in the ocean input files of the CMIP5 models. To create difference plots against
observations or other models all data are regridded to a common grid (e.g., 1° x 1°)
using the regridding functionality of the Earth System Modeling Framework (ESMF,
https://www.ncl.ucar.edu/Applications/ESMF.shtml).

4.2.2 Southern Ocean diagnostics
Southern Ocean mixed layer dynamics and surface turbulent fluxes

Earth system models often show large biases in the Southern Ocean mixed layer. For
example, Sterl et al. (2012) showed that in EC-Earth/NEMO the Southern Ocean is too
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warm and salinity too low, while the mixed-layer is too shallow. These biases are not
specific to EC-Earth, but are rather widespread. At the same time, values for Antarctic
Circumpolar Current (ACC) transport vary between 90 and 264 Sv in CMIP5 models,
with a mean of 155+ 51 Sv. The differences are associated with differences in the ACC
density structure.

A namelist has been implemented in the ESMValTool to analyse these biases
(namelist_SouthernOcean.xml). With these diagnostics polar stereographic (differ-
ence) maps can be produced to compare monthly/annual mean model fields with cor-
responding ERA-Interim data. There are also scripts to plot the differences in the area
mean vertical profiles of ocean temperature and salinity between models and data from
the World Ocean Atlas (Antonov et al., 2010; Locarnini et al., 2010). The ocean mixed
layer thickness from models can be compared with that obtained from the Argo floats
(Dong et al., 2008). Finally, the ACC strength, as measured by water mass transport
through the Drake Passage, is calculated using the same method as in the CDFTOOLS
package (CDFTOOLS, http://servforge.legi.grenoble-inp.fr/projects/CDFTOOLS). This
diagnostic can be used to calculate the transport through other sections as well, but
is presently only available for NEMO/ORCA1 output, for which all grid information is
available. The required variables for the comparison with ERA-Interim are sea surface
temperature (tos), downward heat flux (hfds, calculated from ERA-Interim by summing
the surface latent and sensible heat flux and the net shortwave and longwave fluxes
(hfls + hfss + rsns + rins)), water flux (wfpe, calculated by summing precipitation and
evaporation (pr + evspsbl)) and the wind stress components (tauu and tauv). For the
comparison with the World Ocean Atlas 2009 data (WOAOQ9) sea surface salinity (sos),
sea water salinity (so) and temperature (to) are required variables. For the comparison
with the Argo floats the ocean mixed layer thickness (mlotst) is required. Finally the
two components of sea water velocity (uo and vo) are required for the volume trans-
port calculation. Some example figures from this set of diagnostic scripts are shown for
EC-Earth in Fig. 14.
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Atmospheric processes forcing the Southern Ocean

One leading cause of SST biases in the Southern Ocean is systematic biases in sur-
face radiation fluxes (Trenberth and Fasullo, 2010) coupled with systematic errors in
macrophysical (e.g. cloud amount) and microphysical (e.g. frequency of mixed-phase
clouds) cloud properties (Bodas-Salcedo et al., 2014).

A namelist has been implemented into the ESMValTool that compares model esti-
mates of cloud, radiation and surface turbulent flux variables over the Southern Ocean
with suitable observations (namelist_SouthernHemisphere.xml). Due to the lack of
surface/in-situ observations over the Southern Ocean, remotely sensed data can be
subject to considerable uncertainty (Mace, 2010). While this is uncertainty is not ex-
plicitly addressed in ESMValTool (v1.0), in future releases we will include a number of
alternative satellite based data sets for cloud variables (e.g., MISR, MODIS, ISCCP)
as well as new methods under development to derive surface turbulent flux estimates
constrained by observed TOA radiation flux estimates and atmospheric energy diver-
gence derived from reanalysis products (Trenberth and Fasullo, 2008). Inclusion of
multiple satellite-based estimates will provide some estimate of observational uncer-
tainty over the region. Variables analysed include (i) total cloud cover (clt), vertically
integrated cloud liquid water and cloud ice water (clwvi, clivi) (ii) surface/(TOA) down-
ward/outgoing total sky and clear-sky short wave and longwave radiation fluxes (rsds,
rsdcs, rlds, rldscs/rsut, rsutcs, rlut, rlutcs) and (iii) surface turbulent latent and sensible
heat fluxes (hfls, hfss). Observational constraints are derived from, respectively; cloud:
CloudSat level 3 data (Stephens et al., 2002), radiation: CERES-EBAF level 3 Ed2 data
and surface turbulent fluxes: WHOI-OAflux (Yu et al., 2008).

The following diagnostics are calculated with accompanying plots: (i) Seasonal mean
absolute-value and difference maps for model data vs. observations covering the
Southern Ocean region (30-65°S) for all variables. (i) Mean seasonal cycles using
zonal means averaged separately over three latitude bands (i) 30-65°S, the entire
Southern Ocean, (ii) 30—-45° S, the sub-tropical Southern Ocean and (iii) 45-65° S, the

7568

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

mid-latitude Southern Ocean. (iii) Annual means of each variable (models and obser-
vations) plotted as zonal means, over 30-65°S, (iv) Scatter plots of seasonal mean
downward (surface) and outgoing (TOA) longwave and short wave radiation as a func-
tion of; total cloud cover, cloud liquid water path or cloud ice water path, calculated for
the 3 regions outlined above. Figure 15 provides an example diagnostic, with the top
panel showing covariability of seasonal mean surface downward short wave radiation
as a function of total cloud cover. To construct the figure grid point values of cloud
cover, for each season covering 30° S to 65°S, are saved into bins of 5% increasing
cloud cover. For each grid point the corresponding seasonal mean radiation value is
used to obtain a mean radiation flux for each cloud cover bin. The lower panel plots
the fractional occurrence of seasonal mean cloud cover from CloudSat and model data
for the same spatial and temporal averaging as used in the upper panel. Observations
from CERES-EBAF radiation plotted against CloudSat cloud cover are compared to an
example CMIP5 model. From the covariability plot we can diagnose whether models
exhibit a similar dependency between incoming surface short wave radiation and cloud
cover as seen in observations. We can further assess if there is a systematic bias in
surface solar radiation and whether this bias occurs at specific values of cloud cover.
Similar covariability plots are available for surface incoming longwave radiation and for
TOA long and short wave radiation, plotted respectively against cloud cover, cloud lig-
uid water path and cloud ice water path. Combining these diagnostics provides a com-
prehensive evaluation of simulated relationships between surface and TOA radiation
fluxes and cloud variables.

4.2.3 Simulated tropical ocean climatology

An accurate representation of the tropical climate is fundamental for ESMs. The major-
ity of solar energy received by the Earth is in the tropics and the potential for thermal
emission of absorbed energy back to space is also largest in the tropics due to the high
column concentrations of water vapor at low latitudes (Pierrehumbert, 1995; Stephens
and Greenwald, 1991). Coupled interactions between equatorial SSTs, surface wind
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stress, precipitation and upper-ocean mixing are central to many tropical biases in
ESMs. This is the case both with respect to the mean state and for key modes of
variability, influenced by, or interacting with, the mean state (e.g., El Nifio Southern
Oscillation (ENSQO), Choi et al., 2011). Such biases are often reflected in a “double
Inter-Tropical Convergence Zone (ITCZ)” seen in the majority of CMIP3 and CMIP5
CCMs (Li and Xie, 2014; Oueslati and Bellon, 2015). The double ITCZ bias, present
in many ESMs, occurs when models fail to simulate a single, year round, ITCZ rainfall
maximum north of the equator. Instead, an unrealistic secondary maximum in models
south of the equator is present for some or all of the year. Such biases are particu-
larly prevalent in the tropical Pacific, but can also occur in the Atlantic (Oueslati and
Bellon, 2015). This double ITCZ is often accompanied by an overextension of the East
Pacific equatorial cold tongue into the Central Pacific, collocated with a positive bias in
easterly near-surface wind speeds and a shallow bias in ocean mixed layer depth (Lin,
2007). Such biases can directly impact the ability of an ESM to accurately represent
ENSO variability (An et al., 2010; Guilyardi, 2006) and its potential sensitivity to cli-
mate change (Chen et al., 2015), with negative consequences for a range of simulated
features, such as regional tropical temperature and precipitation variability, monsoon
dynamics and ocean and terrestrial carbon uptake (Iguchi, 2011; Jones et al., 2001).
To assess such tropical biases with the ESMValTool, we have implemented
a namelist with diagnostics motivated by the work of Li and Xie (2014)
(namelist_TropicalVariability.xml). In particular, we reproduce their Fig. 5 for models
and observations/reanalyses, calculating equatorial mean (5° N-5° S), longitudinal sec-
tions of annual mean precipitation (pr), skin temperature (ts), horizontal winds (ua and
va) and 925hPa divergence (derived from the sum of the partial derivatives of the
wind components extracted at the 925 hPa pressure level (that is du/dx + dv/dy). Lati-
tude cross sections of the model variables are plotted for the equatorial Pacific, Indian
and Atlantic Oceans with observational constraints provided by the TRMM-3B43-v7
for precipitation, the HadISST for SSTs, and ERA-interim reanalysis for temperature
and winds. Latitudinal sections of absolute and normalized annual mean SST and pre-
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cipitation are also calculated, spatially averaged for the three ocean basins. Normal-
ization follows the procedure outlined in Fig. 1 of Li and Xie (2014) whereby values
at each latitude are normalized by the tropical mean (20° N-20° S) value of the cor-
responding parameter (e.g., annual mean precipitation at a given location is divided
by the 20°N-20° S annual mean value). Finally, to assess how models capture ob-
served relationships between SST and precipitation we calculate the co-variability of
precipitation against SST for specific regions of the tropical Pacific. This analysis in-
cludes calculation of the Mean Square Error (MSE) between model SST/precipitation
and observational equivalents. The namelist as included in ESMValTool (v1.0) runs on
all CMIP5 models. Figure 16 provides one example of the tropical climate diagnostics,
with latitude cross sections of absolute and tropical normalized SST and precipitation
from three CMIP5 models (HadGEM2-ES, Collins et al., 2011; MPI-ESM-LR and IPSL-
CM5A-MR, Dufresne et al., 2013) plotted against HadISST data.

4.2.4 Seaice

Sea ice is a key component of the climate system through its effects on radiation and
seawater density. A reduction in sea ice area results in increased absorption of short-
wave radiation, which warms the sea ice region and contributes to further sea ice loss.
This process is often referred to as the sea ice albedo climate feedback which is part
of the Arctic amplification phenomena (Curry, 2007). CMIP5 models tend to underes-
timate the sharp decline in summer Arctic sea ice extent observed by satellites during
the last decades (Stroeve et al., 2012) which may be related to models’ underesti-
mation of the sea ice albedo feedback process (Boé et al., 2009). Conversely in the
Antarctic, observations show a small increase in March sea ice extent while the CMIP5
models simulate a small decrease (Flato et al., 2013; Stroeve et al., 2012). It is there-
fore important that model sea-ice processes are evaluated and improvements regularly
assessed. Caveats have been noted with respect to the limitations of using only sea
ice extent as a metric of model performance (Notz et al., 2013) as the sea ice con-
centration, volume, and drift, sea ice thickness and surface albedo, as well as sea ice
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processes such as melt pond formation or the summer sea ice melt are all important
sea ice related quantities. In addition the atmospheric forcings (e.g., wind, clouds, and
snow) and ocean forcings (e.g., salinity and ocean transport) impact on the sea ice
state and evolution.

In ESMValTool (v1.0) the sea ice namelist includes diagnostics that cover sea ice
extent and concentration (namelist_Sealce.xml), but work is underway to include other
variables and processes in future releases. An example diagnostic produced by the
sea ice namelist is given in Fig. 17, which shows the timeseries of September Arctic
sea ice extent from the CMIP5 historical simulations compared to observations from
the National Snow and Ice Data Center (NSIDC) produced by combining concentra-
tion estimates created with the NASA Team algorithm and the Bootstrap algorithm
(Meier et al., 2013; Peng et al., 2013) and SSTs from the HadISST data set, similar to
Fig. 9.24 of Flato et al. (2013). Sea ice extent is calculated as the total area (km2) of
grid cells over the Arctic or Antarctic with sea-ice concentrations (sic) of at least 15 %.
The sea ice namelist can also calculate the seasonal cycle of sea ice extent and polar
stereographic contour and polar contour difference plots of Arctic and Antarctic sea ice
concentration.

4.3 Detection of systematic biases in the physical climate: land
4.3.1 Continental dry bias

The representation of land surface processes and fluxes in climate models critically
affects the simulation of near-surface climate over land. In particular, energy partition-
ing at the surface strongly influences surface temperature and it has been suggested
that temperature biases in ESMs can be in part related to biases in evapotranspiration.
The most notable feature in a majority of CMIP3 and CMIP5 models is a tendency to
overestimate evapotranspiration globally (Mueller and Seneviratne, 2014).

A diagnostic to analyse the representation of evapotranspiration in ESMs has been
included in the ESMValTool (namelist_Evapotransport.xml). For comparison with the
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LandFlux-EVAL product (Mueller et al., 2013), the modelled surface latent heat flux
(hfls) is converted to evapotranspiration units using the latent heat of vaporization. The
diagnostic then produces lat-lon maps of absolute evapotranspiration as well as bias
maps (model minus reference product). In Fig. 18, the global pattern of monthly mean
evapotranspiration is evaluated against the LandFlux-EVAL product. The evapotran-
spiration diagnostic is complemented by the Standardized Precipitation Index (SPI)
diagnostic (namelist_SPIl.xml), which gives a measure of drought intensity from an
atmospheric perspective and can help relating biases in evapotranspiration to atmo-
spheric causes such as the accumulated precipitation amounts. For each month, pre-
cipitation (pr) is summed over the preceding months (options for 3, 6 or 12-monthly
SPI). Then a two-parameter Gamma distribution of cumulative probability is fitted to
the strictly positive month sums, such that the probability of a non-zero precipitation
sum being below a certain value x corresponds to Gamma(x). The shape and scale
parameters of the gamma distribution are estimated with a maximum likelihood ap-
proach. Accounting for periods of no precipitation, occurring at a frequency q, the to-
tal cumulative probability distribution of a precipitation sum below x, H(x), becomes
H(x) = g + (1 - q)-Gamma(x). In the last step, a precipitation sum x is assigned to its
corresponding SPI value by computing the quantile g_N(0,1) of the standard normal
distribution at probability H(x). The SPI of a precipitation sum x, thus, corresponds
to the quantile of the standard normal distribution which is assigned by preserving the
probability of the original precipitation sum, H(x). Mean and annual cycle are not mean-
ingful since the SPI accounts for seasonality and transforms the data to a zero average
in each month. Therefore the diagnostic focuses on lat-lon maps of annual or seasonal
trends in SPI (unitless).

4.3.2 Runoff

Evaluation of precipitation is a challenge due to potentially large errors and uncertainty

in observed precipitation data (Biemans et al., 2009; Legates and Willmott, 1990). An

alternative or additional option to the direct evaluation of precipitation over land (such
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as, e.g., included in the global precipitation evaluation in Sect. 4.1.2) is the evaluation of
river runoff that can in principle be measured with comparatively small errors for most
rivers. Routine measurements are performed for many large rivers, generating a large
global database (e.g. available at the Global Runoff Data Centre (GRDC), Dimenil
Gates et al., 2000). The length of available time series, however, varies between the
rivers, with large data gaps especially in recent years for many rivers. The evaluation of
runoff against river gauge data can provide a useful independent measure of the sim-
ulated hydrological cycle. If both river flow and precipitation are given with reasonable
accuracy, it will also provide an observational constraint on model surface evaporation,
provided that the considered averaging time periods are long enough so that changes
in surface water storages are negligible (Hagemann et al., 2013), e.g., by considering
climatological means of 20 years or more. For present climate conditions ESMs often
exhibit a dry and warm near-surface bias during summer over mid-latitude continents
(Hagemann et al., 2004). Continental dry biases in precipitation exist in the majority
of CMIP5 models over South America, the Mid-west of US, the Mediterranean region,
Central and Eastern Europe, West and South Asia (Fig. 9.4 of Flato et al., 2013). These
precipitation biases often transfer into dry biases in runoff, but sometimes dry biases
in runoff can be caused by a too large evapotranspiration (Hagemann et al., 2013). In
order to relate biases in runoff to biases in precipitation and evapotranspiration, the
catchment oriented evaluation in this section considers biases in all three variables.
This means that the respective variables are considered as spatially averages over the
drainage basins of large rivers.

Beside bias maps, a set of diagnostics to produce basin-scale comparisons of runoff
(mrro), evapotranspiration (evspsbl) and precipitation (pr) have also been implemented
in ESMValTool (namelist_runoff_et.xml). This namelist calculates biases in climatolog-
ical annual means of the three variables for 12 large-scale catchments areas on differ-
ent continents and for different climates. For total runoff, catchment averaged model
values are compared to climatological long-term averages of GRDC observations.
Due to the incompleteness of these station data, a year-to-year correspondence of
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data cannot be achieved so only climatological data are considered, as in Hagemann
et al. (2013). Simulated precipitation is compared to catchment-averaged WATCH forc-
ing data based on ERA-Interim (WFDEI) data (Weedon et al., 2014) for the period
1979-2010. Evapotranspiration observations are estimated using the difference of the
catchment-averaged WFDEI precipitation minus the climatological GRDC river runoff.
As an example, Fig. 19 shows biases in runoff coefficient (runoff/precipitation) against
the relative precipitation bias for the historical simulation of one of the CMIP5 models
(MPI-ESM 1.1).

4.4 Detection of biogeochemical biases: carbon cycle
4.41 Terrestrial biogeochemistry

A realistic representation of the global carbon cycle is a fundamental requirement for
ESMs. In the past, climate models were directly forced by atmospheric CO, concentra-
tions, but since CMIP5, ESMs are routinely forced by anthropogenic CO, emissions,
the atmospheric concentration being inferred from the difference between these emis-
sions and the ESM simulated land and ocean carbon sinks. These sinks are affected
by atmospheric CO, and climate change, inducing feedbacks between the climate sys-
tem and the carbon cycle (Arora et al., 2013; Friedlingstein et al., 2006). Quantification
of these feedbacks is critical to estimate the future of these carbon sinks and hence
atmospheric CO, and climate change (Friedlingstein et al., 2014).

The diagnostics implemented in ESMValTool to evaluate simulated terrestrial
biogeochemistry are based on the study of Anav et al. (2013) and span sev-
eral time-scales: climatological means, intra-annual (seasonal cycle), interannual
and long-term trends (namelist_anav13jclim.xml). Further extending these routines,
carbon cycle performance metrics from Anav et al. (2013) are implemented in
namelist_perfmetrics_CMIP5. These metrics assess how both the land and ocean bio-
geochemical components of ESMs reproduce different aspects of the land and ocean
carbon cycle, with an emphasis on variables controlling the exchange of carbon be-
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tween the atmosphere and these two reservoirs. The analysis indicates some level of
compensating errors within the models. Selecting, within the namelist, several specific
diagnostics to be applied to more key variables controlling the land or ocean carbon cy-
cle, can help reducing the risk of missing such compensating errors. Figure 20 shows
a portrait diagram similar to Fig. 3 but for seasonal carbon cycle metrics based on the
point-wise RMSE against suitable reference data sets (see below). For annual mean
trend diagnostics, such as those shown in Fig. 21, a PDF-Skill Score metric is addi-
tionally implemented which compares the mean state and the interannual variability of
a given variable at each grid point by comparing the common area under both PDFs.
The overlap of both PDFs provides a measure for the model ranking, with a perfect
score of 1 meaning a full overlap of both PDFs (Anav et al., 2013, Eq. 5).

For land, diagnostics of the land carbon sink net biosphere productivity (nbp) are
essential. Although direct observations are not available, nbp can be estimated from
atmospheric CO, inversions (JMA and TRANSCOM) and on the global scale com-
bined with observation-based estimates of the oceanic carbon sink (fgco2 from GCP,
Le Quéreé et al., 2014). In addition to net carbon fluxes, diagnostics for gross primary
productivity of land (gpp), leaf area index (lai), vegetation (cVeg) and soil carbon pools
(cSoil) are also implemented in the ESMValTool to assess possible error compensa-
tion in ESMs. Observation-based gpp estimates are derived from Model Tree Ensem-
ble (MTE) upscaling data (Jung et al., 2009) from the network of eddy-covariance flux
towers (FLUXNET, Beer et al., 2010). The leaf area index data set used for evalua-
tion (LAI3g) is derived from the Global Inventory Modeling and Mapping Studies group
(GIMMS) AVHRR normalized difference vegetation index (NDVI-017b) data (Zhu et al.,
2013). Finally, cSoil and cVeg are assessed as mean annual values over different large
sub-domains using the Harmonised World soil Database (HWSD, Nachtergaele et al.,
2012) and the Olson based vegetation carbon data set (Gibbs, 2006; Olson et al.,
1985).
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4.4.2 Marine biogeochemistry

Marine biogeochemistry models form a core component of ESMs and require evalua-
tion for multiple passive tracers. The increasing availability of quality-controlled global
biogeochemical data sets for the historical period (e.g. Surface Ocean CO, Atlas Ver-
sion 2 (SOCAT v2, Bakker et al., 2014) provides further opportunity to evaluate model
performance on multi-decadal timescales. Recent analyses of CMIP5 ESMs indicate
that persistent biases exist in simulated biogeochemical variables, for instance as iden-
tified in ocean oxygen (Andrews et al., 2013) and carbon cycle (Anav et al., 2013) fields
derived from CMIP5 historical experiments. Some systematic biases in biogeochemical
tracers can be attributed to physical deficiencies within ocean models (see Sect. 4.3),
motivating further understanding of coupled physical-biogeochemical processes in the
current generation of ESMs. For example, erroneous over oxygenation of subsurface
waters within the MPI-ESM-LR CMIP5 model has been attributed to excess ventilation
and vertical mixing in mid- to high-latitude regions (llyina et al., 2013).

A namelists is provided that includes diagnostics to support the evaluation of ocean
biogeochemical cycles at global scales, as simulated by both ocean-only and coupled
climate—carbon cycle ESMs (namelist_GlobalOcean.xml). Supported input variables
include surface partial pressure of CO, (spco2), surface chlorophyll concentration (chl),
surface total alkalinity (talk) and dissolved oxygen concentration (02). These variables
provide an integrated view of model skill with regard to reproducing bulk marine ecosys-
tem and carbon cycle properties. Observation-based reference data sets include SO-
CAT v2 and ETH-SOM-FFN (Landschutzer et al., 2014a, b) for surface pCO, (intPP),
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data for surface chloro-
phyll (McClain et al., 1998), climatological data for total alkalinity (Takahashi et al.,
2014), and World Ocean Atlas 2005 climatological data (WOAQ5) with in-situ correc-
tions following Bianchi et al. (2012) for dissolved oxygen. Diagnostics calculate contour
plots for climatological distributions, inter-annual or inter-seasonal (e.g. JJAS) variabil-
ity together with the difference between each model and a chosen reference data set.
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Monthly, seasonal or annual frequency time-series plots can also be produced either
globally averaged or for a selected latitude—longitude range. Optional extensions in-
clude the ability to mask model data with the same coverage as observations, calcu-
late anomaly fields, and to overlay trend lines, and running or multi-model means. Pre-
processing routines are also included to accommodate native curvilinear grids, com-
mon in ocean model discretisation (see Sect. 4.3.1), along with providing the ability to
extract depth levels from 3-D input fields. An example plot is presented in Fig. 22, show-
ing inter-annual variability in surface ocean pCO, as simulated by a subset of CMIP5
ESMs (BNU-ESM, HadGEM2-ES, GFDL-ESM2M), expressed as the standard devia-
tion of de-trended annual averages for the period 1998—2011. The Representative Con-
centration Pathways (RCP) 4.5 CMIP5 model experiments are used to extend historical
integrations beyond 2005 to facilitate comparison with an observation-based reference
pCO, field (ETH SOM-FFN), which extrapolates SOCAT v2 data (Bakker et al., 2014)
using a 2-step neural network method. As described in Landschutzer et al. (2014a),
ETH SOM-FFN partitions monthly SOCAT v2 pCO, observations into discrete biogeo-
chemical provinces by establishing common relationships between independent input
parameters using a Self Organising Map (SOM). Non-linear input—target relationships,
as derived for each biogeochemical province using a Feed-Forward Network (FFN)
method, are then used to extrapolate observed pCO,.

A diagnostic for oceanic Net Primary Production (NPP) is also implemented in ESM-
ValTool for climatological annual mean and seasonal cycle, as well as for inter-annual
variability over the 1986—-2005 period (namelist_anav13jclim.xml). Observations are
derived from the SeaWiFS satellite chlorophyll data, using the Vertically Generalized
Production Model (VGPM, Behrenfeld and Falkowski, 1997). Finally, similarly to land
carbon, the net air—sea CO, flux from ESMs (Fig. 21 right panels) is evaluated in terms
of mean and interannual variations and climatological annual means over different zon-
ally averaged domains using atmospheric inversions of the air-sea CO, flux as refer-
ence data (Gurney et al., 2003) and GCP estimates for the global ocean (Le Quéré
et al., 2014).
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4.5 Detection of biogeochemical biases: aerosols and trace gas chemistry
451 Tropospheric aerosols

Tropospheric aerosols play a key role in the Earth system and have a strong influ-
ence on climate and air pollution. The global aerosol distribution is characterized by
a large spatial and temporal variability which makes its representation in ESMs par-
ticularly challenging (Ghan and Schwartz, 2007). In addition, aerosol interactions with
radiation (direct aerosol effect, Schulz et al., 2006) and with clouds (indirect aerosol
effects, Lohmann and Feichter, 2005) need to be accounted for. Model-based esti-
mates of anthropogenic aerosol effects are still affected by large uncertainties, mostly
due to an incorrect representation of aerosol processes (Kinne et al., 2006). Myhre
et al. (2013) report a substantial spread in simulated aerosol direct effects among 16
global aerosol models and attribute it to diversities in aerosol burden, aerosol optical
properties and aerosol optical depth (AOD). Diversities in black carbon (BC) burden up
to a factor of three, related to model disagreements in simulating deposition processes
were also found by Lee et al. (2013). Model meteorology can be a source of diver-
sity since it impacts on atmospheric transport and aerosol lifetime. This in turn relates
to the simulated essential climate variables such as winds, humidity and precipitation
(see Sect. 4.1). Large biases also exist in simulated aerosol indirect effects (IPCC,
2013) and are often a result of systematic errors in both model aerosol and cloud fields
(see Sect. 4.1.6).

To assess current biases in global aerosol models, the aerosol namelist of the ES-
MValTool comprises several diagnostics to compare simulated aerosol concentrations
and optical depth at the surface against station data, motivated by the work of Pringle
et al. (2010), Pozzer et al. (2012), and Righi et al. (2013) (namelist_aerosol.xml). Diag-
nostics include time series of monthly or yearly mean aerosol concentrations, scatter
plots with the relevant statistical indicators, and contour maps directly comparing model
results against observations. Comparison is performed considering collocated model
and observations in space and time. In the current version of ESMValTool, these di-
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agnostics are supplied with observational data from a wide range of station networks,
including Interagency Monitoring of Protected Visual Environments (IMPROVE) and
CASTNET (North America), European Monitoring and Evaluation Programme (EMEP,
Europe) and the recently-established Asian network (EANET). The AERONET data are
also available for evaluating aerosol optical depth in continental regions and in a few re-
mote marine locations. For evaluating aerosol optical depth, we also use satellite data,
the primary advantage of which is almost-global coverage, particularly over the oceans.
Satellite data is however affected by uncertainties related to the algorithm used to pro-
cess radiances into relevant geophysical state variables. The tool currently implements
data from the Multi-angle Imaging SpectroRadiometer (MISR, Stevens and Schwartz,
2012), MODIS and the ESACCI-AEROSOL product (Kinne et al., 2015) which is a com-
bination of ERS2-ATSR2 and ENVISAT-AATSR data. Aerosol optical depth time series
over the ocean for the period 1850-2015 are shown in Fig. 23 for the CMIP5 models in
comparison to MODIS and ESACCI-AEROSOL. Finally, more specific aerosol diagnos-
tics have been implemented to compare aerosol vertical profiles of mass and number
concentrations and aerosol size distributions, based on the evaluation work by Lauer
et al. (2005) and Aquila et al. (2011). These diagnostics, however, use model quantities
that were not part of the CMIP5 data request and therefore will not be discussed here.

4.5.2 Tropospheric trace gas chemistry and stratospheric ozone

In the past, climate models were forced with prescribed tropospheric and stratospheric
ozone concentration, but since CMIP5 some ESMs include interactive chemistry and
are capable of representing prognostic ozone (Eyring et al., 2013; Flato et al., 2013).
This allows models to simulate important chemistry-climate interactions and feedback
processes. Examples include the increase in oxidation rates in a warmer climate which
leads to decreases in methane and its lifetime (Voulgarakis et al., 2013) or the increase
in tropical upwelling (associated with the Brewer Dobson circulation) in a warmer cli-
mate and corresponding reductions in tropical lower stratospheric ozone as a result of
faster transport and less time for ozone production (Butchart et al., 2010; Eyring et al.,
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2010). It is thus becoming important to evaluate the simulated atmospheric composi-
tion in ESMs. A common high bias in the Northern Hemisphere and a low bias in the
Southern Hemisphere has been identified in tropospheric column ozone simulated by
chemistry-climate models participating in the Atmospheric Chemistry Climate Model
Intercomparison Project (ACCMIP), which could partly be related to deficiencies in the
ozone precursor emissions (Young et al., 2013). Analysis of CMIP5 models with re-
spect to trends in total column ozone show that the multi-model mean of the models
with interactive chemistry is in good agreement with observations, but that significant
deviations exist for individual models (Eyring et al., 2013; Flato et al., 2013). Large vari-
ations in stratospheric ozone in models with interactive chemistry drive large variations
in lower stratospheric temperature trends. The results show that both ozone recovery
and the rate of GHG increase determine future Southern Hemisphere summer-time
circulation changes and are important to consider in ESMs (Eyring et al., 2013).

The namelists implemented in the ESMValTool to evaluate atmospheric
chemistry and the impact of stratospheric ozone changes on Southern Hemi-
spheric surface climate can reproduce the analysis of tropospheric ozone
and precursors of Righi et al. (2015) (namelist_righi15gmd_tropo3.xml,
namelist_righi15gmd_Emmons.xml) and the studies by Eyring et al. (2006) and
Eyring et al. (2013) (namelist_eyring06jgr.xml, namelist_eyring13jgr.xml). The cal-
culation of the RMSE, mean bias, and Taylor diagrams (see Sect. 4.1.1) has been
extended to tropospheric column ozone (derived from tro3 fields), ozone profiles (tro3)
at selected levels, and surface carbon monoxide (vmrco) (see Righi et al. (2015)
for details). This enables a consistent calculation of relative performance for the
climate parameters and ozone, which is particularly relevant given that biases in
climate can impact on biases in chemistry and vice versa. In addition, diagnostics that
evaluate tropospheric ozone and its precursors (nitrogen oxides (vmrnox), ethylene
(vmrc2h4), ethane (vmrc2h6), propene (vmrc3h6), propane (vmrc3h8) and acetone
(vmrch3coch3)) are compared to the observational data of Emmons et al. (2000).
A diagnostic to compare tropospheric column ozone from the CMIP5 historical
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simulations to Aura MLS/OMI observations (Ziemke et al.,, 2011) is also included
and shown as an example in Fig. 24. For the stratosphere, total column ozone (toz)
and processes-oriented diagnostics from Eyring et al. (2006) are implemented that
include the seasonal cycle of temperature at 100 hPa and the correlation of the heat
flux at 100 hPa (vt100) vs. temperatures (ta) at 50 hPa, both evaluated with ERA-40
data (Uppala et al., 2005), vertical and latitudinal profiles of inorganic chlorine (cly),
methane (ch4), water vapour (h20) and time-height sections of water vapour mixing
ratio (i.e., the tape recorder) evaluated with satellite data from HALOE (Groo3 and
Russell lii, 2005), and age of air (age) evaluated against satellite measurements of
HF and HCI from HALOE (Anderson et al., 2000) and other sources (see Eyring
et al. (2006) for details). Figure 25 shows the CMIP5 total column ozone time series
compared to five different observational data sets: ground-based measurements
(updated from Fioletov et al., 2002), NASA TOMS/OMI/SBUV(/2) merged satellite data
(Stolarski and Frith, 2006), the NIWA combined total column ozone database (Bodeker
et al., 2005), Solar Backscatter Ultraviolet (SBUV, SBUV/2) retrievals (updated from
Miller et al., 2002), and GOME/SCIA/GOME-2 (Loyola and Coldewey-Egbers, 2012).

4.6 Linking model performance to projections

The relatively new research field of emergent constraints aims to link model perfor-
mance evaluation with future projection feedbacks. An emergent constraint refers to
the use of observations to constrain a simulated future Earth system feedback. It is
referred to as emergent, because a relationship between a simulated future projection
feedback and an observable element of climate variability emerges from an ensemble
of ESM projections, potentially providing a constraint on the future feedback. Emer-
gent constraints can help focus model development and evaluation onto processes
underpinning uncertainty in the magnitude and spread of future Earth system change.
Systematic model biases in certain forced modes, such as the seasonal cycle of snow
cover or inter-annual variability of tropical land CO, uptake appear to project in an un-
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derstandable way onto the spread of future climate change feedbacks resulting from
these phenomena (Cox et al., 2013; Hall and Qu, 2006; Wenzel et al., 2014).

To reproduce the analysis of Wenzel et al. (2014) that provides an emergent
constraint on future tropical land carbon uptake, a namelist is included into ES-
MValTool (v1.0) that performs emergent constraint analysis of the carbon cycle-
climate feedback parameter (y,1) (Friedlingstein et al., 2006; Cox et al., 2013)
(namelist_wenzel14jgr.xml). This namelist only considers the CMIP5 ESMs that pro-
vided the necessary output for the analysis. This criterion precludes most CMIP5 mod-
els and only seven ESMs are included here. The namelist includes diagnostics which
analyse the short-term sensitivity of atmospheric CO, to temperature variability on in-
terannual time scales (y,ay) for models and observations, as well as diagnostics for y |1
from the models. The observed sensitivity y,,y is calculated by summing land (nbp)
and ocean (fgco2) carbon fluxes which are correlated to tropical near-surface air tem-
perature (tas). Results from historical model simulations are compared to observation
based estimates of carbon fluxes from the Global Carbon project (GCP, Le Quéré et al.,
2014) and reanalysis temperature data from the NOAA National Climate Data Center
(NCDC, Smith et al., 2008). For diagnosing y,t from the models, nbp from idealized
fully coupled and biochemically coupled simulations are used as well as tas from fully
coupled idealized simulations (see Fig. 26). Emergent constraints of this type help to
understand some of the underlying processes controlling future projection sensitivity
and offer a promising approach to reduce uncertainty in multi-model climate projec-
tions.
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5 Use of the ESMValTool in the model development cycle and evaluation
workflow

5.1 Model development

As new model versions are developed, standardized diagnostics suites as presented
here allow model developers to compare their results against previous versions of the
same model or against other, e.g. CMIP, models. Such analyses help to identify dif-
ferent aspects in a model that have either improved or degraded as a result of a par-
ticular model development. The benchmarking of ESMs using performance metrics
(see Sect. 4.1.1) provides an overall picture of the quality of the simulation, whereas
process-oriented diagnostics help determine whether the simulation quality improve-
ments are for the correct underlying physical reasons and point to paths for further
model improvement.

The ESMValTool is intended to support modelling centres with quality control of their
CMIP DECK experiments and the CMIP6 historical simulation, as well as other experi-
ments related to the individual Model Intercomparison Projects (MIPs) that are part of
CMIPS6. A significant amount of institutional resources go into running, post-processing,
and publishing model results from such experiments. It is important that centres can
easily identify and correct potential errors in this process. The standardized analyses
contained in the ESMValTool can be used to monitor the progress of CMIP experi-
ments. While the tool is designed to accommodate a wide range of time axes and
configurations, and many of the diagnostics may be run on control or future climate
experiments, ESMValTool (v1.0) is largely targeted to evaluate AMIP and the CMIP
historical simulations.

5.2 Integration into modelling workflows

The ESMValTool can be run as a stand-alone tool, or be integrated into existing mod-
elling workflows. The primary challenge is to provide CF/CMOR compliant data. Not
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all modelling centres produce CF/CMOR compliant data directly as part of their work-
flow although we note that more are doing so as the potential benefits are being re-
alized. For many groups conversion to CF/CMOR standards involves significant post-
processing of native model output. This may require some groups to perform analysis
via the ESMValTool on their model output after conversion to CF/CMOR, or to create
intermediate “CMOR-like” versions of the data. Users who wish to use native model
output can take advantage of the reformatting routine flexibility (see Sect. 2.3) to cre-
ate scripts that convert this data into the CF/CMOR standard. As an example, reformat
scripts for the NOAA-GFDL models and the EMAC model are included with the initial
release. These scripts are used to convert the native model output for direct use with
the ESMValTool. The reformatting routine capability may provide an alternative to more
expensive and complete “CMORization” processes that are usually required to formally
publish model data on the ESGF.

5.3 Running the ESMValTool alongside the ESGF

Large international model inter-comparison projects (such as CMIP) stimulated the
development of a globally distributed federation of data providers, supporting common
data provisioning policies and infrastructures. ESGF is an international open source ef-
fort to establish a distributed data and computing platform, enabling world wide access
to Peta- (in the future Exa-) byte scale scientific climate data. Data can be searched
via a globally distributed search index with access possible via HTTP, OpenDAP and
GridFTP. To efficiently run the ESMValTool on CMIP model data and observations
alongside the ESGF, the necessary data hosted by the ESGF has to be made lo-
cally accessible at the site where ESMValTool is executed. There are two possibilities
(which can be exploited in parallel) to accomplish this. The first is to configure ESM-
ValTool to use locally available data which is independently managed in a local ESGF
data pool (replica and published files). The second option is to download files remotely
from the ESGF and cache them on the user’s local system, under the control of a “Data
Manager”, which may be part of the ESMValTool software, or existing third party soft-
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ware under user (or local administrator) control. Larger ESGF sites often act as replica
centres maintaining a large ESGF replica pool (e.g., DKRZ, BADC, IPSL, PCMDI) and
thus can effectively exploit the first option. Others can rely on the ESMValTool Data
Manager to download and maintain a download cache of required input data sets. Both
options require configuration of ESMValTool to use data organized in a hierarchical di-
rectory tree, organized following the CMIP conventions. Figure 27 provides a schematic
overview of the coupling of the ESMValTool to the ESGF. As mentioned, ESMValTool
uses a standard namelist written in XML to define models and variables to be analysed.
If the ESGF enabled ESMValTool software is running on an ESGF node, the Data Man-
ager can use information held in the namelist to locate the correct file within the node’s
local data pool. If the file is unavailable there, or ESMValTool is not running on an ESGF
node, the Data Manager can instead use namelist information to locate the file in the
local download cache (see above). If files are not available they will be downloaded
and stored in the download cache. Using a cache avoids downloading of files more
than once. Thus using the Data Manager, which is currently being developed, the ES-
MValTool is decoupled from the distributed ESGF data infrastructure, which acts as the
data source for local copies of the required files.

6 Summary and outlook

The Earth System Model eValuation Tool (ESMValTool) is a diagnostics package for
routine evaluation of Earth System Models (ESMs) against observations and reanaly-
ses data or for comparison with results from other models. The ESMValTool has been
developed to facilitate the evaluation of complex ESMs at individual modelling cen-
tres and to help streamline model evaluation standards within CMIP. Priorities to date
that are included in ESMValTool (v1.0) described in this paper, concentrate on selected
systematic biases that were a focus of the European Commission’s 7th Framework Pro-
gramme “Earth system Model Bias Reduction and assessing Abrupt Climate change
(EMBRACE)” project, the DLR Earth System Model Evaluation (ESMVal) project and
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other collaborative projects, in particular: performance metrics for selected ECVs, cou-
pled tropical climate variability, monsoons, Southern Ocean processes, continental dry
biases and soil hydrology-climate interactions, atmospheric CO, budgets, ozone, and
tropospheric aerosol. We have applied the bulk of the diagnostics of ESMValTool (v1.0)
to the entire set of CMIP5 historical or AMIP simulations. The namelist on emergent
constraints for the carbon cycle has been additionally applied to idealized carbon cycle
experiments and the emission driven RCP 8.5 simulations.

ESMValTool (v1.0) can be used to compare new model simulations against CMIP5
models and observations for the selected scientific themes much faster than this was
possible before. Model groups, who wish to do this comparison before submitting their
CMIP6 Historical Simulation or AMIP experiment to the ESGF can do so since the tool
is provided as open source software. In order to run the tool locally, observations need
to be downloaded and for tiers 2 and 3 reformatted with the help of the reformatting
scripts that are included. Model output needs to be either in CF compliant NetCDF
or a reformatting routine needs to be written by the modelling group, following given
examples for EMAC, GFDL models, and NEMO.

Users of the ESMValTool (v1.0) results need to be aware that ESMValTool (v1.0)
only includes a subset of the wide behaviour of model performance that the community
aims to characterize. The results of running the ESMValTool need to be interpreted ac-
cordingly. Over time, the ESMValTool will be extended with additional diagnostics and
performance metrics. A particular focus will be to integrate additional diagnostics that
can reproduce the analysis of the climate model evaluation chapter of IPCC AR5 (Flato
et al., 2013) as well as the projection chapter (Collins et al., 2013). We will also extend
the tool with diagnostics to quantify forcings and feedbacks in the CMIP6 simulations
and to calculate metrics such as the equilibrium climate sensitivity (ECS), transient cli-
mate response (TCR), and the transient climate response to cumulative carbon emis-
sions (TCRE) from the idealized CMIP experiments (IPCC, 2013). While inclusion of
these diagnostics is straight forward, the evaluation of processes and phenomena to
improve understanding about the sources of errors and uncertainties in models that we
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also plan to enhance remains a scientific challenge. The field of emergent constraints
remains in its infancy and more research is required how to better link model perfor-
mance to projections (Flato et al., 2013). In addition, an improved consideration of the
interdependency in the evaluation of a multi-model ensemble (Sanderson et al., 2015a,
b) as well as internal variability in ESM evaluation is required.

A critical aspect in ESM evaluation is the availability of consistent, error-
characterized global and regional Earth observations, as well as accurate globally grid-
ded reanalyses that are constrained by assimilated observations. Additional or longer
records of observations and reanalyses will be used as they become available, with
a focus on using obs4MIPs — including new contributions from the European Space
Agency’s Climate Change Initiative (ESA CCI) — and ana4MIPs data. The ESMVal-
Tool can consider observational uncertainty in different ways, e.g. through the use of
more than one observational data set to directly evaluate the models, by showing the
difference between the reference data set and the alternative observations, or by in-
cluding an observed uncertainty ensemble that spans the observed uncertainty range
(e.g. available for the surface temperature data set compiled for HadISST). Often the
uncertainties in the observations are not readily available. Reliable and robust error
characterization/estimation of observations is a high priority throughout the commu-
nity, and obs4MIPs and other efforts that create data sets for model evaluation should
encourage the inclusion of such uncertainty estimates as part of each data set.

The ESMValTool will be contributed to the analysis code catalogue being developed
by the WGNE/WGCM climate model metrics panel (http://www-metrics-panel.linl.gov/
wiki). The purpose of this catalogue is to make the diversity of existing community-
based analysis capabilities more accessible and transparent, and ultimately for de-
veloping solutions to ensure they can be readily applied to the CMIP DECK and
the CMIP6 historical simulation in a coordinated way. We are currently exploring op-
tions to interface with complimentary efforts, e.g. the PCMDI metrics package (Gleck-
ler et al., EOS, 2015) and the Auto-Assess package that is under development at
the UK Met Office. An international strategy for organising and presenting CMIP
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results produced by various diagnostic tools is needed, and this will be a priority
for the WGNE/WGCM climate metrics panel in collaboration with the CMIP Panel
(http://www.wcrp-climate.org/index.php/wgcm-cmip/about-cmip).

This paper presents ESMValTool (v1.0) which allows users to repeat all the analyses
shown. Additional updates and improvements will be included in subsequent versions
of the software, which are planned to be released on a regular basis. The ESMValTool
works on CMIP5 simulations and, given CMIP DECK and CMIP6 simulations will be
in a similar format, it will be straightforward to run the package on these simulations.
A limiting factor at present is the need to download all data to a local cache. This lim-
itation has spurred the development allowing ESMValTool to run alongside the ESGF
at one of the data nodes. An initial attempt to couple the tool to the ESGF has been
made, but further improvements are required. An additional limiting factor is that the
model output from all CMIP models has to be mirrored to the ESGF data node where
the tool is installed. This is facilitated by providing a listing of the variables and time fre-
quencies that are used in ESMValTool (v1.0) which uses a significantly smaller volume
than the data request for the CMIP DECK and CMIP6 simulations will include. This
reduced set of data could be mirrored with priority.

Several technical improvements are required to make the software package more
efficient. One current limitation is the lack of a parallelization. Given the huge amount
of data involved in a typical CMIP analysis, this can be highly CPU-time-intensive when
performed on a single processor. In future releases, the possibility of parallelizing the
tool will be explored. Additional development work is ongoing to create a more flexible
pre-processing framework, which will include operations like ensemble-averaging and
regridding to the current reformatting procedures as well as an improved coupling to
the ESGF. Here, future versions of the ESMValTool will build as much as possible on
existing efforts for the backend that reads and reformats data. In this regard it would be
helpful if an application programming interface (API) could be defined for example by
the WGCM Infrastructure Panel (WIP) that allows for flexible integration of diagnostics
across different tools and programming languages in CMIP to this backend.
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We aim to move ESM evaluation beyond the state-of-the-art by investing in opera-
tional evaluation of physical and biogeochemical aspects of ESMs, process-oriented
evaluation and by identifying processes most important to the magnitude and uncer-
tainty of future projections. Our goal is to support CMIP DECK and CMIP6 evaluation
by contributing the ESMValTool as one of the standard documentation functions and by
running it alongside the ESGF. In collaboration with similar efforts, we aim for a routine
evaluation that provides a comprehensive documentation of broad aspects of model
performance and its evolution over time and to make evaluation results available at
a timescale that was not possible in CMIP5. This routine evaluation is not meant to
replace further in-depth analysis of model performance and can to date not strongly
reduce uncertainties in global climate sensitivity which remains an active area of re-
search. However, the ability to routinely perform such evaluation will drive the quality
and realism of ESMs forward and will leave more time to develop innovative process-
oriented diagnostics — especially those related to feedbacks in the climate system that
link to the credibility of model projections.

Code availability

ESMValTool VERSION 1.0 (v1.0) that is described in this paper will be made available
from the ESMValTool web-page at http://www.pa.op.dir.de/ESMValTool via a tar-file
with a Digital Object Identifier (doi) assigned. ESMValTool (v1.0) will be released under
the Apache License, VERSION 2.0 and citation of this paper is kindly requested upon
use. In addition, ESMValTool will be further developed in a version controlled reposi-
tory that is accessible only to the development team. Regular releases are planned for
the future. The wider climate community is encouraged to contribute to this effort and
to join the ESMValTool development team for contribution of additional more in-depth
diagnostics for ESM evaluation. A wiki page for the development that describes ongo-
ing developments is also available. Interested users and developers are welcome to
contact the lead author.
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The Supplement related to this article is available online at
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Table 1. Overview of standard namelists implemented in ESMValTool (v1.0) along with the
quantity and ESMValTool variable name for which the namelist is tested, the correspond-
ing observations or reanalyses, the section and example figure in this paper, and refer-
ences for the namelist. When the namelist is named with a specific paper (naming conven-
tion: namelist_Surname YearJournalabbreviation.xml), it can be used to reproduce in general
all or in some cases only a subset of the figures published in that paper. Otherwise the
namelists group a set of diagnostics and performance metrics for a specific scientific topic
(e.g., namelist_aerosol.xml). Observations and reanalyses are listed together with their tier,
type (e.g., reanalysis, satellite or in-situ observations), the time period used, and a reference.
Tier 1 includes observations from obs4MIPs or reanalyses from ana4MIPs. Tier 2 and tier 3
indicate freely-available and restricted data sets, respectively. For these observations, refor-
matting routines are provided to bring the original data in the CF/CMOR standard format so
that they can directly be used in the ESMValTool.

xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist

Variable Name  (Tier, type, time period, reference) Figure(s)

Sect. 4.1: Detection of systematic biases in the physical climate: atmosphere

namelist_perfmet-  Temperature ("C) ta ERA-Interim (Tier 3, reanalysis, 1979- Sect. 4.1.1./Figs.2and 3  Gleckler et al. (2008),
rics_CMIP5 Eastward wind (m s") ua 2014, Dee et al.,, 2011) Taylor (2001), Fig. 9.7 of

Northward wind (ms™") va Flato et al. (2013)
namelist_ Near-surface air temperature tas NCEP (Tier 2, reanalysis, 1948-2012, Righi et al. (2015)
righil5gmd_ECVs  (°C) Kistler et al., 2001)

Geopotential height (m) 29

Specific Humidity (g kg") hus AIRS (Tier 1, satellite, 2003-2010, Au-

mann et al., 2003)
Precipitation (kgm’2 s") pr GPCP-SG (Tier 1, satellite and rain

gauge, 1979-near-present, Adler et al.,
2003)

CERES-EBAF (Tier 1, satellite, 2001—
2011, Wielicki et al., 1996)

TOA outgoing shortwave radia-  rsut

tion (Wm™2)

TOA outgoing longwave radia- rlut

tion (Wm™2)

TOA outoing clear-sky long- rlutcs
wave radiation (Wm'z)

Shortwave cloud radiative effect SW_CRE
(Wm™)

Longwave cloud radiative effect LW_CRE
(wm™)

Aerosol optical depth at 550nm  od550aer

MODIS (Tier 1, satellite, 20012012,
King et al., 2003)

ESACCI-AEROSOL (Tier 2, satellite,
1996-2012, Kinne et al., 2015)

MODIS (Tier 1, satellite, 2001-2012,
King et al., 2003)

Total cloud amount (%) clt
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Table 1. Continued.

xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist
Variable Name  (Tier, type, time period, reference) Figure(s)
namelist_ Near-surface air temperature tas ERA-Interim (Tier 3, reanalysis, 1979— Sect. 4.1.2/Fig. 4 Figs. 9.2 and 9.4 of
flato13ipcc (°C) 2014, Dee et al., 2011) Flato et al. (2013)
Precipitation (kgm2s™") pr GPCP-1DD (Tier 1, satellite, 1997—
2010, Huffman et al., 2001)
namelist SAMon-  Eastward wind (ms™") ua ERA-Interim (Tier 3, reanalysis, 1979— Sect.  4.1.3, “South Goswami et al. (1999)
soon Northward wind (ms™") va 2014, Dee et al., 2011) Asian summer monsoon Sperber et al. (2013)
MERRA (Tier 1, reanalysis, 1979- (SASM)"/Figs.5 and 6 Wang and Fan (1999)
namelist_SAMon- 2011, Rienecker et al., 2011) Wang et al. (2012)
soon_AMIP Webster and Yang (1992)
Lin et al. (2008), Fig. 9.32
namelist_SAMon- of Flato et al. (2013)
soon_daily
Precipitation (kgm™2s™") pr TRMM-3B42-v7 (Tier 1, satellite, 1998-
near-present, Huffman et al., 2007)
GPCP-1DD 1DD (Tier 1, satellite,
1997-2010, Huffman et al., 2001)
CMAP (Tier 2, satellite and rain
gauge, 1979-near-present, Xie and
Arkin, 1997)
MERRA (Tier 1, reanalysis, 1979-
2011, Rienecker et al., 2011)
ERA-Interim (Tier 3, reanalysis, 1979—
2014, Dee et al., 2011)
Skin temperature (K) ts HadISST (Tier 2, reanalysis, 1870—
2014, Rayner et al., 2003)
namelist WAMon-  Eastward wind (ms™") ua ERA-Interim (Tier 3, reanalysis, 1979— Sect. 4.1.3, “West African Roehrig et al. (2013),
soon Northward wind (ms™") va 2014, Dee et al., 2011) monsoon diagnos-  Cook and Vizy (2006)
Temperature (°C) ta tics"/Fig. 7
namelist. WAMon-  Near-surface air temperature tas
soon_daily (°C)
Precipitation (kgm™2s™") pr GPCP-1DD (Tier 1, satellite, 1997—
2010, Huffman et al., 2001)
TRMM (Tier 1, satellite, 1998-near-
present, Huffman et al., 2007)
TOA outgoing shortwave radia-  rsut CERES-EBAF (Tier 1, satellite, 2001—
tion (Wm'z) 2011, Wielicki et al., 1996)
TOA outgoing longwave radia-  rlut
tion (Wm™2)
TOA outoing clear-sky short- rsutcs
wave radiation (Wm™2)
TOA outoing clear-sky long- rlutcs
wave radiation (Wm™2)
Shortwave cloud radiative effect SW_CRE
(Wm?)
Longwave cloud radiative effect LW_CRE
(wm)
Shortwave downwelling radia- rsds
tion at surface (Wm™2)
Longwave downwelling radia- rlds

tion at surface (Wm'z)

TOA outgoing longwave radia-
tion (Wm™2)

rlut

NOAA polar-orbiting satellites (Tier 2,
satellite, 1974-2013, Liebmann and
Smith, 1996)

7615

| Jadeq uoissnosigq | Jedeq uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

GMDD
8, 7541-7661, 2015

ESMValTool (v1.0)

V. Eyring et al.

(cc) W)


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 1. Continued.

xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist
Variable Name (Tier, type, time period, reference) Figure(s)
list CVDP Precipitation (kgm2s™") pr GPCP-SG (Tier 1, satellite and rain Sect. 4.1.4/Figs. 8and 9  Phillips et al. (2014)
gauge, 1979-near-present, Adler et al.,
2003)
TRMM (Tier 1, satellite, 1998-near-
present, Huffman et al., 2007)
Air pressure at sea level (Pa) psl NOAA-CIRES Twentieth Century Re-
analysis Project (Tier 1, reanalysis,
1900-2012, Compo et al., 2011)
Near-surface air temperature tas NCEP (Tier 2, reanalysis, 1948-2012,
(°C) Kistler et al., 2001)
Skin temperature (K) ts HadISST (Tier 2, satellite-based,
1870-2014, Rayner et al., 2003)
Snow depth (m) snd without obs
Ocean meridional overturning msftmyz without obs
mass streamfunction (kgs™")
namelist_mjo_ Eastward wind (ms™") ua ERA-Interim (Tier 3, reanalysis, 1979— Sect. 4.1.4, “Madden— Waliser et al. (2009), Kim
daily Northward wind (ms™') va 2014, Dee et al., 2011) Julian oscillation et al. (2009)
NCEP (Tier 2, reanalysis, 1979-2013, (MJO)’/Fig. 10
namelist_mjo_ Kistler et al., 2001)
mean_state
Precipitation (kgm™2s™") pr GPCP-1DD (Tier 1, satellite, 1997—
2010, Huffman et al., 2001)
TOA  longwave radiation  rlut NOAA polar-orbiting satellites (Tier 2,
(Wm3) satellite, 1974-2013, Liebmann and
Smith, 1996)
ist_diurnal- Precipitation (kgm'2 s pr TRMM (Tier 1, satellite, 1998-near- Sect. 4.1.5/Fig. 11 Rio et al. (2009)
cycle Convective Precipitation  prc present, Huffman et al., 2007)
(kgm™?s™)
TOA outgoing longwave radia- rlut CERES-SYN1deg (Tier 1, satellite,
tion (Wm™2) 2001-2011, Wielicki et al., 1996)
TOA outgoing shortwave radia-  rsut
tion (Wm™2)
TOA outgoing longwave radia- rlutcs
tion (clear sky) (Wm'z)
TOA outgoing shortwave radia- ~ rsutcs
tion (clear sky) (Wm™?)
Surface downwelling shortwave ~ rsds
radiation (Wm™?)
Surface downwelling shortwave ~ rsdscs
radiation (clear sky) (Wm™2)
Surface upwelling shortwave rsus
radiation (Wm™?)
Surface upwelling shortwave rsuscs
radiation (clear sky) (Wm™2)
Surface upwelling longwave ra-  flus
diation (Wm™2)
Surface upwelling longwave ra- ~ fluscs
diation (clear sky) (Wm™2)
Surface downwelling shortwave  ds
radiation (Wm™?)
ridscs

Surface downwelling clear-sky
longwave radiation (Wm™2)
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Table 1. Continued.

xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist
Variable Name  (Tier, type, time period, reference) Figure(s)
namelist_ Atmosphere cloud condensed clwvi UWisc: SSM/I, TMI, AMSR-E (Tier Sect. 4.1.6, “Clouds and Lauer and Hamilton
lauer13jclim water content (kgm™2) 3, satellite, 1988-2007, O'Dell et al., radiation”/Fig. 12 (2013), Fig. 9.5 of Flato
2008) etal. (2013)
Atmosphere cloud ice content clivi MODIS-CFMIP (Tier 2, satellite, 2003—
(kgm'z) 2014, King et al., 2003, Pincus et al.,
2012)
Total cloud amount (%) clt MODIS (Tier 1, satellite, 2001-2012,
King et al., 2003)
TOA outgoing longwave radia-  rlut CERES-EBAF (Tier 1, satellite, 2001—
tion (Wm’z) 2011, Wielicki et al., 1996)
TOA outgoing longwave radia- rlutcs SRB (Tier 2, satellite, 1984-2007,
tion (clear sky) (Wm™2) GEWEX-news, Feb 2011)
TOA outgoing shortwave radia- rsut
tion (Wm™2)
TOA outgoing shortwave radia-  rsutcs
tion (clear sky) (Wm™2)
Precipitation (kgm™2s™") pr GPCP-SG (Tier 1, sateliite and rain
gauge, 1979-near-present, Adler et al.,
2003)
namelist_ ISCPP mean cloud albedo (1) albisccp ISCCP (Tier 1, satellite, 1985-1990, Sect. 4.1.6, “Quantitative ~ Williams  and Webb
williams09climdyn_  ISCCP mean cloud top pres- pctisccp Rossow and Schiffer, 1991) performance assessment (2009)
CREM sure (Pa) ISCCP-FD (Tier 2, satellite, 1985— of cloud regimes”/Fig. 13
ISCCP total cloud fraction (%)  cltisccp 1990, Zhang et al., 2004)
TOA outgoing shortwave radia-  rsut
tion (Wm™2)
TOA outgoing longwave radia-  rlut
tion (Wm™2)
TOA outoing clear-sky short- rsutcs
wave radiation (Wm™2)
TOA outoing clear-sky long- rlutcs
wave radiation (Wm™2)
Surface snow area fraction (%) snc
Surface snow amount (kgm™?) W
Sea ice area fraction (%) sic
Sect. 4.2: Detection of systematic biases in the physical climate: ocean
namelist_Southern- Ocean Mixed Layer Thickness mlotst ARGO (Tier 2, Buoy, Monthly mean Sect. 4.2.2, “Southern CDFTOOLS
Ocean (m) climatology 2001-2006, Dong et al., Ocean mixed layer dy-
2008) namics and  surface
turbulent fluxes”/Fig. 14
Sea surface temperature (K) tos ERA-Interim (Tier 3, reanalysis, 1979—

Downward heat flux at sea wa-
ter surface (Wm™2)

Surface Downward Eastward
Wind Stress (Pa)

hfds (hfls + hfss
+ rsns + rins)
tauu

2014, Dee et al., 2011)

Surface Downward Nordward tauv

Wind Stress (Pa)

Water Flux from precipitation wfpe (pr +

and evaporation (kgm2s") evspsbl)

Sea water salinity (psu) so WOAQ9 (Tier 2, in-situ, climatology,
Sea surface salinity (psu) sos Antonov et al., 2010, Locarnini et al.,
Sea Water Temperature (K) to 2010)

Sea Water X Velocity (ms™") uo without obs

Sea Water Y Velocity (ms™") vo

7617

Jaded uoissnosiq

Jadeq uoissnosigq | Jaded uoissnosiq

Jaded uoissnosiq

GMDD
8, 7541-7661, 2015

ESMValTool (v1.0)

V. Eyring et al.

(cc) W)


http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/7541/2015/gmdd-8-7541-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 1. Continued.

xml namelist Tested Quantity

ESMValTool
Variable Name

Section/Example References for namelist

Figure(s)

Tested Observations/Reanalyses
(Tier, type, time period, reference)

namelist_Southern- Total cloud amount (%) clt CloudSat (Tier 1, satellite, 2000-2005, Sect. 4.2.2, “Atmospheric ~ Frolicher et al. (2015)
F £ Al cloud ice content clivi Stephens et al., 2002) processes forcing the

(kgm™2) Southern Ocean”/Fig. 15

Atmosphere cloud condensed clwvi

water content (kgm™?)

Surface upward latent heat flux  hfls WHOI-OAflux (Tier 2, satellite-based,

(Wm™) 2000-2005, Yu et al., 2008)

Surface upward sensible heat hfss

flux (Wm™2)

TOA outgoing longwave radia- rlut CERES-EBAF (Tier 1, satellite, 2001—

tion (Wm™2) 2011, Wielicki et al., 1996)

TOA outgoing clear-sky long- rlutcs SRB (Tier 2, satellite, 1984-2007,

wave radiation (Wm™2) GEWEX-news, Feb 2011)

TOA outgoing shortwave radia- rsut

tion (Wm™2)

TOA outgoing shortwave radia- ~ rsutcs

tion (clear sky) (Wm'z)

Surface downwelling shortwave ~ rlds

radiation (Wm™2)

Surface downwelling clear-sky ~rldscs

longwave radiation (Wm’z)

Surface downwelling shortwave ~ rsds

radiation (Wm™?)

Surface downwelling shortwave ~ rsdscs

radiation (clear sky) (Wm™2)
namelist_Tropical-  Precipitation (kgm’2 s") pr TRMM (Tier 1, satellite, 1998-near- Sect. 4.2.3/Fig. 16 Choi et al. (2011), Li and
Variability present, Huffman et al., 2007) Xie (2014)

Sea surface temperature (K) ts HadISST (Tier 2, satellite-based,

1870-2014, Rayner et al., 2003)

Eastward wind (ms™") ua ERA-Interim (Tier 3, reanalysis, 1979—

Northward wind (ms™') va 2014, Dee et al., 2011)
namelist_Sealce Sea ice area fraction (%) sic HadISST (Tier 2, satellite-based, Sect. 4.2.4/Fig. 17 Stroeve et al. (2007)

1870-2014, Rayner et al., 2003) Stroeve et al. (2012),
NSIDC (Tier 2, satellite, 1978-2010, Fig. 9.24 of Flato et al.
Meier et al., 2013, Peng et al., 2013) (2013)

Sect. 4.3: Detection of systematic biases in the physical climate: land

namelist_Evapo- Surface upward latent heat flux hfls LandFlux-EVAL (Tier 3, ground, 1989—-  Sect. 4.3.1/Fig. 18 Mueller and Seneviratne
transport (Wm'z) 2004, Mueller et al., 2013) (2014),
GPCC (Tier 2, Rain gauge analysis, Orlowsky and Senevi-
1901-2010, Becker et al., 2013) ratne (2013)
t SPI Pr ion (kgm™2s™") pr CRU (Tier 2, Rain gauge analysis,
1901-2010, Mitchell and Jones, 2005)
namelist_runoff_ Total runoff (kgm™2s™") mrro GRDC (Tier 2, river runoff gauges, Sect.4.3.2/Fig. 19 Dumenil Gates et al.
et Evaporation (kgm2s™") evspsbl varying periods, Dimenil Gates et al., (2000),
Precipitation (kgm™2s™") pr 2000) Hagemann et al. (2013),

WFDEI (Tier 2, Reanalysis, 1979-
2010, Weedon et al., 2014)

Weedon et al. (2014)
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Table 1. Continued.

xml namelist

Tested Quantity

ESMValTool
Variable Name

Tested Observations/Reanalyses
(Tier, type, time period, reference)

Section/Example
Figure(s)

References for namelist

Sect. 4.4: Detection of biogeochemical biases: carbon cycle

namelist_ Net biosphere production of nbp TRANSCOM (Tier 2, Reanalysis, Sect. 4.4.1/Fig. 20 Anav et al. (2013)
anav13jclim carbon (kgm™2s™") 1985-2008, Gurney et al., 2004)
Surface Downward CO, Flux fgco2
into ocean (kgm2s™")
Gross primary production of gpp MTE (Tier 2, Reanalysis, 1982-2008,
carbon (molm™2s~") Jung et al., 2009)
Leaf area index (molm2s7") lai LAI3g (Tier 2, Reanalysis, 1981-2008,
Zhu et al., 2013)
Carbon mass in vegetation cVeg NDP-017b (Tier 2, remote sensing
(kgm™2) 2000, Gibbs, 2006)
Carbon mass in soil pool cSoil HWSD (Tier 2, reanalysis, climatology,
(kgm2) Nachtergaele et al., 2012)
Primary organic Carbon Pro- intPP SeaWiFS (Tier 2, satellite, 1998-
duction by all types of phyto- 2010, Behrenfeld and Falkowski, 1997,
plankton (molm™2s~") McClain et al., 1998)
namelist_Global- Surface partial pressure of CO, spco2 SOCAT v2 (Tier 2, in-situ, 19682011, ~ Sect. 4.4.2/Fig. 21
Ocean (patm) Bakker et al., 2014)
ETH SOM-FFN (Tier 2, extrapolated in
situ, 1998-2011, Landschitzer et al.,
2014a, b)
Total chlorophyll mass concen-  chl SeaWiFS (Tier 2, satellite,
tration at surface (kgm~>) 1997-2010, Behrenfeld and Falkowski,
1997, McClain et al., 1998)
Dissolved oxygen concentration 02 WOAO05 (Tier 2, in situ, climatology
(molm™®) 1950-2004, Bianchi et al., 2012)
Total alkalinity at surface talk T14 (Tier 2, in situ, 2005, Takahashi

(mol m'a)

etal,, 2014)

Sect. 4.5: Detection of biogeochemical biases: chemistry and aerosols

namelist_aerosol

Surface concentration of SO,
(igm™)

Surface concentration of NO,
(igm™)

Surface concentration of NH,
(Hgm™®)

Surface concentration of black
carbon aerosol (ugm™)
Surface concentration of dry
aerosol primary organic matter
(ugm®)

Surface concentration of PM,,
Surface concentration of PM, 5

concso4
concnod
concnh4
concbe
concoa

concpm10
concpm2p5

CASTNET (Tier 2, Ground, 1987-
2012, Edgerton et al., 1990)

EANET (Tier 2, Ground, 2001-2005,
Totsuka et al., 2005)

Aerosol Number Concentration

BC Mass Mixing Ratio (kgkg™")
Dry Aerosol (kgkg™")

BC-Free Mass Mixing Ratio
(kgkg™")

concenm

mrbc
mmraer
mmrbcfree

Aircraft campaigns (Tier 3, aircraft, var-
ious)

Sect. 4.5.1/Fig. 22

Lauer et al. (2005)

Aquila et al. (2011)

Righi et al. (2013),
Fig. 9.29 of Flato et al.
(2013)
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Table 1. Continued.

GMDD

xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist
Variable Name  (Tier, type, time period, reference) Figure(s) 8, 7541 _7661 , 201 5
Aerosol  Optical Depth at od550aer AERONET (Tier 2, Ground, 1992-2012,
550nm (1) Holben et al., 1998)
MODIS (Tier 1, satellite, 2001-2012, King
etal., 2003)

MISR (Tier 2, Satellite, 2001-2012,
Stevens and Schwartz, 2012)
ESACCI-AEROSOL (Tier 2, satellite,
1996-2012, Kinne et al., 2015)

Jaded uoissnosiq

ESMValTool (v1.0)

namelist_ Ozone (molmol™") tro3 Aura MLS-OMI (Tier 2, satellite, 2005— Sect. 4.5.2/Fig. 23 Ozone of Righi et al. V Eyrlng et al
righi15gmd_ 2013, Ziemke et al., 2011) (2015) including Emmons @)
tropo3 Ozone sondes (Tier 2, sondes, 1995— et al. (2000) diagnostic =
2009, Tilmes et al., 2011) wn
namelist_ 2
Emmons ()]
Carbon Monoxide (molmol™") vmrco GLOBALVIEW (Tier 2, ground, 1991- o
2008, GLOBALVIEW-CO2, 2008) = - -
Nitrogen Dioxide (NO, = NO + vmrnox Emmons (Tier 2, aircraft, various cam- ne
NO,) (molmol™") paign, Emmons et al., 2000) Q
C,Hg Propane (molmol™") vmrc2h6 =
C4Hg Propane (molmol™) vmre3h6
Acetone (molmol™") vmrch3co
ch3
list_ (C) ta ERA-Interim (Tier 3, reanalysis, 1979- Sect. 4.5.2/Fig. 24 Eyring et al. (2006) W)
eyring06jgr Eastward wind (ms™") ua 2014, Dee et al., 2011) a
Heat flux (V'T’) vt100 NCEP (Tier 2, reanalysis, 1948-2012, )
Kistler et al., 2001) ()
Temperature (°C) ta RATPAC (Tier 2, radiosondes, Climatol- & - -
ogy, Free et al., 2005) 3
ERA40 (Tier 3, reanalysis, 1979-1999, o
Methane (molmol") ch4 HALOE (Tier 2, satellite, 1991-2002, E
Hydrogen Chlorine hel GrooB and Russell lll, 2005) o
(molmol™") [0
Water vapour h2o =
Age of Air (years) age
Inorganic Chlorine cly HCI estimates from Aura MLS (Tier 2, —_—
(molmol™") satellite, 2005-2013, Ziemke et al., 2011) _
and HALOE (Tier 2, campaign, 1991—
2002, Russell et al., 1993) O
Total Column Ozone (DU) toz Ground-based (Tier 3, in-situ, climatology, (7]
Fioletov et al., 2002) o
Merged satellite data (Tier 2, satellite, %
1970-2014, Stolarski and Frith, 2006) 7]
NIWA (Tier 3, sondes, climatology, —
Bodeker et al., 2005) g @ 0
SBUV/2 (Tier 3, satellite, 1978-present, [
Miller et al., 2002) U
GOME/SCIA/GOME-2 (Tier 3, satellite, Q
1995-2013, Loyola and Coldewey- ©
Egbers, 2012) Q
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V. Eyring et al.

Table 1. Continued. o
(2]
xml namelist Tested Quantity ESMValTool Tested Observations/Reanalyses Section/Example References for namelist 2
Variable Name  (Tier, type, time period, reference) Figure(s) wn _
Ozone (molmol") tro3 AURA-MLS-OMI  (Tier 2, satellite, 2
2005-2013, Ziemke et al., 2011) g
namelist_ Temperature ("C) ta ERA-Interim (Tier 3, reanalysis, 1979— Sect. 4.6/Fig. 25 Eyring et al. (2013): B - -
eyring13jgr Eastward wind (ms™') ua 2014, Dee et al., 2011) Fig. 9.10 of Flato et al. Q
NCEP (Tier 2, reanalysis, 1948-2012, (2013) o
Kister tal. 2090) w - -
Temperature (°C) ta RATPAC (Tier 2, radiosondes, Clima- =
tology, Free et al., 2005)
ERAO (Tie 8, eanalyss, 1979-2014, . - -
Uppala et al., 2005)
Total Column Ozone (DU) toz See above o
Tropospheric  column ozone tropoz AURA-MLS-OMI  (Tier 2, satellite, a
(DU) 2005-2013, Ziemke et al., 2011) o
0Ozone (molmol™") tro3 =
Sect. 4.6: Linking model performance to projections = - -
ist_ N rface air P tas NCDC (Tier 2, reanalysis, 1880-2001, Sect. 4.7/Fig. 26 Wenzel et al. (2014), 6
wenzel14jgr (°C) Smith et al., 2008) Fig. 9.45 of Flato et al. 35
e Y - -
Net biosphere production of nbp GCP (Tier 2, reanalysis, 1959-present, Q
carbon (kgm™2s™") Le Quéré et al., 2014) o
Suriace Downmra mor‘) fou EE _
Surface Downward CO, Flux fgco2
into ocean (kgm~2s~")
9
(7]
o
=
n
@,
S (cc) W)
3 BY
o
Q
3
=
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Table 2. Overview of the diagnostics included for each namelist along with specific calculations,

the plot type, settings in the configuration file (cfg-file), and comments.

xml namelist

Diagnostics  in-

cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

Sect. 4.1: Detection of systematic biases in the physical climate: atmosphere

namelist_ perfmetrics_ Time averages, Annual cycle line plot, Specific plot type, time averaging (e.g. an- The results of the analysis are saved
perfmetrics_  main.ncl Regional weighted zonal mean plot, lat- nual, seasonal and monthly climatologies, to a netCDF file for each model to be
CMIP5 averages, lon map plot annual and multi-year monthly means), re-  read by perfmetrics_grading.ncl or perfmet-
t-test for difference gion, pressure level, rics_taylor.ncl.
namelist_ plots reference model,
righi15gmd_ difference plot (True/False), statistical sig-
ECVs nificance level of t-test for difference plot,
multi model mean/median
perfmetrics_ Grading metric, No plot Type of metric for grading models (RMSE,  For tractability the filename for every diagnos-
grading.ncl normalization Bias) tic is written into a temporary file, which then
Type of normalization (mean, median, is read by the perfmetrics _XXX_collect.ncl
centered median) scripts.
Additional metric and normalization methods
can be added.
perfmetrics_ Normalization No plot Same as for perfmetrics_grading.ncl
taylor.ncl
perfmetrics_ Collection of model Portrait diagram If individual models did not provide output for
grading_col- grades from  pre- all variables or are compared to a different
lect.ncl calculated  netCDF number of observations, the code will recog-
files nize this and return a blank array entry, prud-
cing a white box in the portrait diagram, pro-
duces Fig. 9.7 included in namelist_
flato13jpcc
perfmetrics_ Collection of model Taylor diagram
taylor_col- grades from  pre-
lect.ncl calculated netCDF
files
namelist_ clouds_ipcc.ncl  Multi-model  means, Zonal mean plots, Map projection (CylindricalEquidistant, Produces Fig. 9.5 of Flato et al. (2013) with
flato13ipcc linear regridding to the ~ global map Mercator, Mollweide), selection of target namelist_flato13ipcc.nml!
grid of the reference grid, time mean (annualclim, seasonal-
data set clim), reference data set
clouds_bias.ncl  Multi-model ~ means, Global map Map projection (CylindricalEquidistant, Produces Figs. 9.2 and 9.4 of Flato et al.
linear regridding to the Mercator, Mollweide), selection of target (2013) with namelist_flato13ipcc.xml
grid of the reference grid, time mean (annualclim, seasonal-
data set clim), reference data set
namelist_ SAMonsoon_ Mean and interannual Map contour plot, re- Region (latitude, longitude), season (con- Zonal and meridional wind fields are used,
SAMonsoon  wind_basic.ncl standard deviation gional mean, RMSE secutive month), contour levels mean and standard deviation (across all

and spatial correlation
are given in plot titles

years) for each model. This diagnostic also
plots the difference of the mean/standard de-
viation with respect to a reference data set.
Mean contour plots include wind vectors.
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Table 2. Continued.

xml namelist  Diagnostics in-  Specific Calcula-  Plot Types Settings in cfg-file Comments
cluded tions (e.g., statistical
measures, regridding)
SAMonsoon_ Climatology, seasonal Annual cycle Region (latitude, longitude), season (con- Dynamical indices calculated from zonal and
wind_sea- anomalies and inter- secutive month), line colours, multi model meridional wind fields are used. Wind levels
sonal.ncl annual variability mean (y/n) are selected by input quantity (e.g. ua-200-
850 and va-200-850)
SAMonsoon_ Mean and interannual Map contour plot, re- Region (latitude, longitude), Similar to SAMonsoon_wind_basic.ncl
precip_ba- standard deviation gional mean, RMSE season (consecutive month), contour lev-
sic.ncl and spatial correlation els
are given in plot titles
SAMonsoon_ Climatology, seasonal Annual cycle Region (latitude, longitude), season (con-  Similar to SAMonsoon_wind_seasonal.ncl
precip_sea- anomalies and inter- secutive month), line colours, multi model
sonal.ncl annual variability mean (y/n)
SAMonsoon_ Mean and standard Map contour plot Region (latitude, longitude), Domain and intensity defined using summer
precip_do- deviation season (consecutive month), contour lev- and winter precipitation defined appropriately
main.ncl els for each hemisphere. Differences from refer-
ence data set also plotted. Produces Fig. 9.32
included in namelist_flato13ipcc
SAMonsoon_ Correlation between Map contour plot, re- Region (latitude, longitude), pr and ts are used to calculate teleconnec-
teleconnec- interannual seasonal gional mean, RMSE season (consecutive month), contour lev- tions between precip and interannual Nino3.4
tions.ncl mean Nino3.4 SST and spatial correlation els SSTs.
timeseries (5°S-5°N, are given in plot titles Differences from reference data set also plot-
190-240° E) and ted.
precipitation over
monsoon region.
namelist_ SAMonsoon_ Mean and standard Time-series line plot Region (latitude, longitude), season (con- Seasonal means of dynamical indices calcu-
SAMon- wind_IAV.ncl deviation secutive month), multi model mean (y/n) lated for each year from zonal and meridional
soon_AMIP wind fields are used.
SAMonsoon_ Mean and standard Time-series line plot Region (latitude, longitude), season (con- Seasonal means of precipitation for each year
precip_IAV.ncl deviation secutive month), multi model mean (y/n) are used.
Note that the scripts in namelist_ SAMonsoon
and namelist_SAMonsoon_daily can be used
for coupled and atmosphere-only models
alike, but this namelist allows year-to-
year variations to be examined only for
atmosphere-only simulations forced by ob-
served SSTs.
namelist_ SAMonsoon_ Standard deviation of Map contour plot. Region (latitude, longitude), season (con- Both, actual standard deviations and stan-
SAMon- precip_daily.ncl filtered daily precipita- Regional mean, spa- secutive month), contour levels dard deviations normalized by a climatol-
soon_daily tion rates for each sea- tial correlation and ogy (with masking for precipitation rates <

son

averages for Bay of
Bengal (10-20°N,
80-100°E) and E. Eq.
Indian Ocean (10°S—
10°N, 80-10°E) are
given in plot titles.

1mmday™") are plotted.

SAMonsoon_
precip_propa-
gation.ncl

Regional ~ averages,
lagged  correlations,
band-pass filtering
of daily precipitation
rates

Hovméller  diagrams:
(lag, lat) and (lag, lon)

Regions (latitude, longitude), season
(consecutive months), filter settings

Similar to namelist_mjo_daily_propagation
but using 30-80 day band-pass filtering and
regions appropriate for SASM.
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Table 2. Continued.

xml namelist

Diagnostics  in-
cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

namelist_ WAMonsoon_ Mean and standard Map contour plot Region (latitude, longitude), season (con-  Similar to SAMonsoon_wind_basic.ncl
WAMon- contour_ba- deviation secutive months), specific contour levels
soon sic.ncl
namelist_
WAMon-
soon_daily
WAMonsoon_ Mean and standard Map contour and vec- Region (latitude, longitude), season (con- Mean wind contour and vector plots at se-
wind_basic.ncl  deviation tor plot secutive months), contour levels, refer- lected pressure level. Similar to SAMon-
ence vector length soon_wind_basic.ncl
WAMonsoon_ Zonal average over Latitude line plot Region (latitude), season (consecutive Only 2 dimensional fields
10W10E_1D_ 10°W-10°E month)
basic.ncl
WAMonsoon_ Zonal average over Vertical profile (lati- Region (latitude, pressure level), season Only 3 dimensional fields
10W10E_3D_ 10°W-10°E tude vs. level) contour (consecutive month), contour levels
basic.ncl plot
WAMonsoon_ Seasonal anoma-  Time-series line plot Region (latitude, longitude) Similar to SAMonsoon_wind_IAV.ncl
precip_IAV.ncl lies and interannual
variability
WAMonsoon_ Mean annual cycle Time-series line plot Region (latitude, longitude) Similar to SAMonsoon_wind_seasonal.ncl
precip_sea-
sonal.ncl
WAMonsoon_  1day autocorrelation Map contour plot Region (latitude, longitude), season (con-
autocorr.ncl of 1-90 day (intra- secutive months), filtering properties, con-
seasonal) anomalies tour levels
WAMonsoon_ Intra-seasonal  vari- Map contour plot Region (latitude, longitude), season (con-
isv_filtered.ncl ance (time filtering) secutive months), filtering properties, con-
tour levels
namelist_ cvdp_at- Renaming climo files No plot Needed for the CVDP coupling to the ESM-
CVDP mos.ncl to CVDP naming con- ValTool.
vention,
Generates CVDP
namelist ~ with  all
models
cvdp_ Renaming climo files  No plot
ocean.ncl to CVDP naming con-
vention
cvdp_obs.ncl Generates CVDP  No plot Reference model(s) for each variable Needed for the CVDP coupling to the ESM-
name-list ~ with all ValTool.
observations
cvdp_ Calls the CVDP No plot Needed for the CVDP coupling to the ES-
driver.ncl MValTool. Flexible implementation for easy
update-processes, Results of the analy-
sis are saved in netCDF files for each
model/observation
amo.ncl Area-weighted aver- Lat-lon contour plots, Original CVDP diagnostic

age, linear regression,

spectral analysis,
regridding for area-
weighted pattern

correlation and RMS
difference

time-series,
plots

spectral
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Table 2. Continued.

xml namelist

Diagnostics  in-
cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

amoc.ncl

Mean, standard devi-
ation, EOF, linear re-
gression, lag correla-
tions, spectral analysis

Pattern plots, spectral
plots, time-series

Original CVDP diagnostic

pdo.ncl

EOF, linear regres-
sion, spectral analysis

Lat-lon contour plots,
time-series, spectral
plots

Original CVDP diagnostic

pr.mean_std-
dev.ncl

Global means, stan-
dard deviation

Lat-lon contour plots

Original CVDP diagnostic

pr.trends_time-

Global trends

Lat-lon contour plots,
time-series

Original CVDP diagnostic

Global means, stan-
dard deviation

Lat-lon contour plots

Original CVDP diagnostic

series.ncl
psl.mean_std-
dev.ncl
psl.modes_in-
dices.ncl

EOF, linear regression

Lat-lon contour plots,
time series

Original CVDP diagnostic

psl.trends.ncl

Global trends

Lat-lon contour plots

Original CVDP diagnostic

snd.trends.ncl

Global trends

Lat-lon contour plots

Original CVDP diagnostic

sst.indices.ncl

Area-weighted av-

erage, standard
deviation,  spectral
analysis

Spatial  composites,
hovmoller  diagram,
time-series, ~ spectral
plots

Original CVDP diagnostic

sst.mean_std-
dev.nc

Global means, stan-
dard deviation

Lat-lon contour plots

Original CVDP diagnostic

sst.trends_
timeseries.ncl

Global trends

Lat-lon contour plots,
time-series

Original CVDP diagnostic

tas.mean_std-
dev.ncl

Global means, stan-
dard deviation

Lat-lon contour plots

Original CVDP diagnostic

tas.trends_
timeseries.ncl

Global trends

Lat-lon contour plots,
timeseries

Original CVDP diagnostic

metrics.ncl

Collect all  area-
weighted pattern
correlations and RMS
differences  created
by the various scripts,
calculates total score

xt-file

Original CVDP diagnostic

webpage.ncl

Creates webpages to
display CVDP results

-html files

Original CVDP diagnostic

namelist_
mjo_daily

mjo_wave_
freq.ncl

Meridional ~ average
over 10°S-10°N,
wavenumber-
frequency

Wavenumber-
frequency  contour
plot

Season (summer, winter), daily max/min,
region (latitude)

mjo_univari-
ate_eof.ncl

Conventional (covari-
ance) univariate EOF
analysis

Lat-lon contour plot

Region (latitude, longitude), number and
name of EOF modes, contour levels

EOF for 20100 day band-pass filtered daily

anomaly data
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Table 2. Continued.

xml namelist ~ Diagnostics in-

cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

mjo_precip_
u850-200_
propagation.ncl

Correlation, zonal av-
erage over 80-100°E,
meridional average
over 10°S-10°N,
reference region over
75-100°E,10°S-5°N

Lag-longitude and lag-
latitude diagram

Season(summer, winter, annual), re-
gion(latitude, longitude)

Lead/lag correlation of two variables with
daily time resolution

mjo_precip_ Variance Lat-lon contour plot Season (summer, winter), region (latitude, 20-100 day bandpass filtered variance for
uwnd_vari- longitude), contour levels two variables with daily time resolution
ance.ncl

mjo_olr_u850- Coherence squared Wavenumber- Region (latitude), segments length and Missing values are not allowed in the input
200_cross_ and phase lag frequency contour  overlapped segments length, spectra type data

spectra.ncl plot

mjo_olr_u850_  CEOF Line plot Region(latitude),number and names of the first two CEOF modes (PC1 and PC2)
200_ceof.ncl CEOF modes, y axis limit are retained for the MJO composite life cycle

analysis

mjo_olr_uv850_

Calculate mean value
for each phase cate-
gory

Lat-lon contour plot

Season (summer, winter), region (latitude,
longitude)

The appropriate MJO phase categories are
derived from PC1 and PC2 of CEOF analysis

Season mean

Lat-lon contour plot

Season (summer, winter), region (latitude,
longitude)

Based on monthly data

Mean diurnal cycle
computation,  regrid-
ding of observations
and models  over
a specific grid and first
harmonic analysis to
derive amplitude and
phase of maximum
rainfall

Composites of diur-
nal cycles over spe-
cific regions and sea-
sons, global maps of
maximum precipitation
phase and amplitude

A prerequisite to use this namelist is to check
the time axis of high frequency data from
models and observations to be sure of what is
provided. One should check in particular if it is
instantaneous or averaged values, and if the
time provided corresponds to the middle or
the end of the 3h interval. Note that timeaxis
is modified in the namelist to make data co-
herent.

Multi-model mean

Lat-lon contour plot

map projection (CylindricalEquidistant,
Mercator, Mollweide), destination grid

Produces Fig. 9.5 included in

namelist_flato13ipcc

Multi-model mean

Taylor diagram

Taylor diagrams

Interannual variability,
multi-model mean

Lat-lon contour plot

Map projection (CylindricalEquidistant,
Mercator, Mollweide), destination grid,
reference data sets

ceof_life_
cycle.ncl
namelist_ mjo_precip_
mjo_mean_  u850_basic.ncl
state
namelist_di-
urnalcycle
namelist_ clouds.ncl
lauer13jclim
clouds_tay-
lor.ncl
clouds_inter-
annual.ncl
namelist_ ww09_ESM-
williams09 ValTool.py
climdyn_
CREM

Model data assigned
to observed cloud
regimes and regime
frequency and mean
radiative  properties
calculated.

Bar graph

Sect. 4.2: Detection of systematic biases in the physical climate: ocean

Polar  stereographic
maps

contour values

namelist_ Sealce_pol-
Southern- con.ncl
Ocean
Sealce_pol-
con_diff.ncl

Rregridding (ESMF)

Polar  stereographic
maps

contour values, reference model
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Table 2. Continued.

xml namelist

Diagnostics in-
cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

SouthernOcean_
vector_polcon_
diff.ncl

Vector overlay (magni-
tude and direction)

Polar  stereographic
maps

contour plot scales, reference model

based on Sealce_polcon_diff.ncl, variables
with v and v components

SouthernOcean_
areamean_
vertconplot.ncl

Regridding (ESMF)

Zonal mean vertical
profiles (Hovmoller di-
agrams)

coordinates of subdomain

based on CDFTOOLS package

SouthernOcean_
transport.ncl

Sea water volume
transport calculation

Line plot

coordinates of subdomain

namelist_ Southern- Regridding (interpola- Seasonal cycle line Masking of unwanted values (limits),
Southern- Hemisphere.py  tion to common grid), plot with region (coordi and season (months)
Hemisphere Temporal and zonal RMSEs and zonal specification, plotting limits, contour
averages, RMSEs mean contour plot colourmap
Southern- Covariability of radia- Scatter plot of values
Hemisphere_ tion fluxes as function with line plot of value
scatter.py of cloud metrics distribution
namelist_ TropicalVari- Temporal and zonal Annual cycles, sea- Masking of unwanted values (limits), Fig. 5 of Lie and Xie, 2014
TropicalVari-  ability.py averages, RMSEs, sonal scatter plots with Region  (coordinates) and season
ability normalization, co- calculated RMSEs (months), plotting limits
variability
TropicalVari- Temporal and zonal Latitude cross sec-
ability_EQ.py averages, RMSEs, tions of equatorial
normalization, co- variables
variability
TropicalVari- Regridding (interpola- Wind divergence plots
ability_wind.py  tion)
namelist_ Sealce_ Sea-ice area and Time series selection of Arctic/Antarctic, Produces  Fig. 9.24  included in
Sealce tsline.ncl extent, regridding namelist_flato13ipcc
(ESMF)
Sealce_ Sea-ice area and Annual cycle line plot  selection of Arctic/Antarctic
ancyc.ncl extent, regridding
(ESMF)
Sealce_pol- Sea-ice area and Polar stereographic selection of Arctic/Antarctic,
con.ncl extent, regridding maps optional red line depicting edges of sea-
(ESMF) ice extent
Sealce_pol- Sea-ice area and Polar stereographic selection of Arctic/Antarctic,
con_diff.ncl extent, regridding maps optional red line depicting edges of sea-
(ESMF) ice extent
Sect. 4.3: Detection of systematic biases in the physical climate: land
namelist_ Evapotranspi- Conversion to evap- Lat-lon contour plot Time period
Evapotrans-  ration.ncl otranspiration  units,
port global average, RMSE
namelist_ SPLr SPI calculation Lat-lon contour plot Time period, time scale (3, 6 or 12 May require manual installation of certain R-
SPI monthly) packages to run
namelist_ catchment_ Temporal and spatial Bar plots of evapotran-  (no cfg. file) Three variables are read by this diagnostic.
runoff_et analysis_val.poy mean for 12 large spiration and runoff

river catchments, re-
gridding to 0.5°x 0.5°
lat-lon grid

bias against observa-
tion, scatter plots of
runoff bias against the
biases of evapotran-
spiration precipitation
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Table 2. Continued.

xml namelist
cluded

Diagnostics  in-

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

Sect. 4.4: Detection of biogeochemical biases: carbon cycle

namelist_ Anav_MVI_ Regridding to com- Scatter plot Region (latitude), resolution size for re- All carbon flux variables were corrected for
anav13jelim  1AV_Trend_ mon grid, monthly and gridding (e.g., 0.5%, 1°, 2°) the exact amount of carbon in the coastal
Plot.ncl annual special aver- regions by applying the models land-ocean
ages, variability (MVI fraction to the variables.
= (model/reference —
reference/model) 2)
Anav_Mean_ Regridding to common  Seasonal cycle line Region (latitude), resolution size for re-
IAV_Error- grid plot, scatter plot, error-  gridding (e.g., 0.5°, 1°, 2°)
Bars_Sea- Monthly and annual bar plot
sonal_cycle_ special averages
plots.ncl
Anav_cSoil- Regridding to common  Scatter plot Region (latitude), resolution size for re- Two variables are read by this diagnostic
cVeg_Scat- grid gridding (e.g., 0.5°, 1°, 2°)
ter.ncl annual special aver-
ages
perfmetrics_ RMSE, PDF-skill  No plot See details in namelist_perfmetrics_CMIP5
grading.ncl score
perfmetrics_ Portrait diagram See details in namelist_perfmetrics_CMIP5
grading_col-
lect.ncl
namelist_ GO_tsline.ncl Multi-model mean Time-series line plot Region (lat/lon), pressure levels, optional
Global- smoothing, anomaly calculations, overlaid
Ocean trend lines, and masking of model data ac-
cording to observations
GO_comp_ Mean, standard devia- Lat-lon contour plot Region (Lat/lon), ocean depth, contour Actual metrics ported from UK MetOffice IDL-
map.ncl tion, and difference to  (for specified z-level) levels monsoon evaluation scripts

reference model

Sect. 4.5: Detection of biogeochemical biases: chemistry and aerosols

namelist_
aerosol

aerosol_sta-
tions.ncl

Regridding to coarsest
grid

Time series, scatter
plot, map plot

Observed stationdata is specified in the
cfg-file

All available observational data in the se-
lected time period, on a monthly-mean basis
is considered. The model data is extracted in
the grid boxes where the respective observa-
tional stations are located (co-located model
and observational data).
Reproducing  Fig.

namelist_flato13jpcc

929 also  with

aerosol_satel-
lite.ncl

Map plots and differ-
ence plots

aerosol_pro-
files.ncl

Mean, standard devia-
tion, median, 5-10-25-
75-90-95 percentiles

Vertical profiles

The model data are extracted based on the
campaign/station location (lat-lon box) and
time period (on a climatological basis, i.e. se-
lecting the same days/months, but regardless
of the year).

Rather specific variables are required (i.e.,
aerosol number concentration for particles
with diameter larger than 14 nm) to match the
properties of the instruments used during the
campaign.
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Table 2. Continued.

xml namelist  Diagnostics in-  Specific Calcula-  Plot Types Settings in cfg-file Comments
cluded tions (e.g., statistical
measures, regridding)
tsline.ncl Line plot Time averaging (annual, seasonal and
monthly climatologies, annual and multi-
year monthly means)
Region (latitude, longitude)
namelist_ ancyc_lat.ncl Regridding to refer- Seasonal Hovmoller global (area-weighted) average is calculated
righi15gmd_ ence (month vs. latitude) only for grid cells with available observational
tropo3 global (area-weighted) data
average,
zonal mean
lat_long.ncl Regridding to coarsest global (area-weighted) average is calculated
grid only for grid cells with available observational
global (area-weighted) data
average
perfmetrics_ Annual cycle line plot, See details in namelist_perfmetrics_ CMIP5
main.ncl zonal mean plot, lat-
lon map plot
perfmetrics_ No plot See details in namelist_perfmetrics_CMIP5
grading.ncl
perfmetrics_ No plot See details in namelist_perfmetrics_CMIP5
taylor.ncl
perfmetrics_ Portrait diagram See details in namelist_perfmetrics_CMIP5
grading_col-
lect.ncl
perfmetrics_ Taylor diagram See details in namelist_perfmetrics_CMIP5
taylor_col-
lect.ncl
namelist_ Emmons.ncl Percentiles Vertical profiles Reference/observational profile file must
righi15gmd_ (5,25,75,95) % be specified
Emmons
namelist_ eyring06jgr_ Climatological mean Vertical profiles Multi model mean (True/False), regions
eyring06jgr  Fig. 01.ncl bias (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring06jgr_ Cosine weighting for Multi model mean (True/False), regions
Fig. 02.ncl latitude averaging (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring06jgr_ Linear regression Scatter plot and corre-  Multi model mean (True/False), tegions Two variables are read.
Fig. 03.ncl lation coefficient (latitude, longitude), pressure level, time
averaging (annual, individual month, sea-
sons)
eyring06jgr_ Anomalies with re- Time seris Multi model mean (True/False), anomaly
Fig. 04.ncl spect to first 10 years (True/False), regions (latitude, longitude),
time averaging (annual, individual month,
seasons)
eyring06jgr_ Anomalies with re- Time series Multi model mean (True/False), regions
Fig. 12b.ncl spect to first 10 years (latitude, longitude), time averaging (an-

nual, individual month, seasons)
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Table 2. Continued.

xml namelist

Diagnostics  in-
cluded

Specific Calcula-
tions (e.g., statistical
measures, regridding)

Plot Types

Settings in cfg-file

Comments

eyring06jgr_ Climatological mean Zonal mean vertical Multi model mean (True/False), regions
Fig. 05.ncl profile (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring06jgr_ Seasonal cycle aver- Seasonal cycle line Multi model mean (True/False), regions
Fig. 07.ncl ages plot (latitude, longitude), pressure level, time
averaging (annual, individual month, sea-
sons)
eyring06jgr_ Cosine weighted area Seasonal Hovméller Multi model mean (True/False), regions Similar to ancyc_lat.ncl: seasonal Hovméller
Fig. 08.ncl average, seasonal av- (month vs. latitude) (latitude, longitude), time averaging (an- (month vs. latitude) diagrams are created but
erage nual, individual month, seasons) showing the moth for two years in a row for
improved analysis of the periodicity.
eyring06jgr_ Phase lag and rela- Vertical profiles Multi model mean (True/False), regions
Fig. 09.ncl tive amplitude of an- (latitude),
nual cycles time averaging (annual, individual month,
seasons)
eyring06jgr_ Cosine weighted area Vertical profile, time Multi model mean (True/False), regions
Fig. 12.ncl average, time average  series (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring06jgr_ Zonal mean, seasonal Seasonal Hovmoller Multi model mean (True/False), regions Similar calculation as for ancyc_lat.ncl
Fig. 14.ncl average (month vs. latitude) (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring06jgr_ Anomalies with re- Time seris, seasonal Multi model mean (True/False), regions Similar to eyring06jgr_Fig. 04.ncl anomalies
Fig. 15.ncl spect to first 10years, cycle line plot (latitude, longitude), pressure level, time of time series are generated but are com-
seasonal cycle mean averaging (annual, individual month, sea- pared to the seasonal cycle of the quantity in
sons) an extra panel.
namelist_ ancyc_lat.ncl Seasonal  Hovmoller See details in namelist_righi15gmd_tropo3
eyring13jgr (month vs. latitude)
eyring13jgr_ Seasonal Hovmoller Multi model mean (True/False), regions
Fig. 01.ncl (month vs. latitude) (latitude, longitude), time averaging (an-
nual, individual month, seasons)
eyring13jgr_ Time series Multi model mean (True/False), regions Produces  Fig.  9.10  included in
Fig. 02.ncl (latitude, longitude), time averaging (an- namelist_flato13jpcc
nual, individual month, seasons)
eyring13jgr_ Anomalies with re- Time series Multi model mean (True/False), regions
Fig. 06.ncl spect to a specifiable (latitude, longitude), time averaging (an-
base line, mean and nual, individual month, seasons)
standard  deviation
(95% confidence) for
simulation experiment
eyring13jgr_ Mean simulation ex- Vertical profile Multi model mean (True/False), regions
Fig. 07.ncl periments, differences (latitude, longitude), time averaging (an-
between future sce- nual, individual month, seasons), list of
nario simulations and models w/o interactive chemistry
historical simulations
eyring13jgr_ Time averages, linear Error bar plot Multi model mean (True/False), regions
Fig. 10.ncl trends (latitude, longitude), height (in km), time
averaging (annual, individual month, sea-
sons)
eyring13jgr_ Correlations and cor-  Scatterplot Multi model mean (True/False), regions Two quantities are compared to each other
Fig. 11.ncl relation coefficient (latitude, longitude), time averaging (an- for individual models and simulations at once.

nual, individual month, seasons)

Simulations are indicated by different marker
types.
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Table 2. Continued.

xml namelist  Diagnostics in-  Specific Calcula-  Plot Types Settings in cfg-file Comments
cluded tions (e.g., statistical
measures, regridding)
Sect. 4.6: Linking model performance to projections
namelist_ tsline.ncl Cosine weighting for Line plot Multi model mean (True/False), anomaly
wenzel14jgr latitude averaging, (True/False),

anomaly with respect
to first 10 years

regions (latitude, longitude), time averag-
ing (annual, individual month, seasons)

carbon_corr_
2vars.ncl

Linear regression

Scatter plot and corre-
lation coefficient

Exclude two years after volcanic eruptions
(True/False: Mount Agung, 1963, EI Chi-
chon, 1982, and Mount Pinatubo, 1991)

Two variables are read.

The gradient of the linear regression and the
prediction error of the fit, giving v, are
saved in an external netCDF file to be read
by the carbon_constraint.ncl script.

carbon_con-
straint.ncl

_ Anbp°—Anbp”
T = e
“c” coupled simulation
“u” biocemically cou-
pled simulation
Gaussian-Normal
PDF
Conditional PDF

Scatter plot and corre-
lation coefficient

Time period, region (latitude)

Three variables are read. (1) y,y is diagnosed
from the models (2) the previously saved
netCDF files containing y,,, values are read
and correlated to y;r (3) normal and condi-
tional PDFs for the pure model ensemble and
the constraint y 1 values are calculated
Produces Fig. 9.45 included in
namelist_flato13ipcc
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— Namelists
ERsm e Interface scripts
Libraries/Utilities
Diag and plot scripts
Input/Output

derive var.ncl

reformat default
reformat EMAC
reformat obs

Calculate derived variable

Check/reformat the input
- T according to CF/CMOR
variable defs/ il

Reformat routines

Call diagnostic scripts
Different languages (typ)
supported: NCL, python, R

YIDVNVYIN MOTINHOM

diag_scripts/lib
Common libraries

ESMValTool

Earth System Model eValuation

Figure 1. Schematic overview of the ESMValTool structure. The primary input to the workflow
manager is a user-configurable text namelist file (orange). Standardized libraries/utilities (pur-
ple) available to all diagnostics scripts are handled through common interface scripts (blue).
The workflow manager runs diagnostic scripts (red) that can be written in several freely-
available scripting languages. The output of the ESMValTool (gray) includes figures, binary
files (netCDF), and a log-file with a list of relevant references and processed input files for each
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Figure 2. Relative space-time root-mean square error (RMSE) calculated from the 1980-2005
climatological seasonal cycle of the CMIP5 historical simulations. A relative performance is
displayed, with blue shading indicating performance being better and red shading worse, than
the median of all model results. A diagonal split of a grid square shows the relative error with
respect to the reference data set (lower right triangle) and the alternate data set (upper left
triangle). White boxes are used when data is not available for the given model and variable
or no alternate data set has been used. The figure shows that performance varies across
CMIP5 models and variables, with some models comparing better with observations for one
variable and another model performing better for a different variable. Except for global average
temperatures at 200 hPa where most but not all models have a systematic bias, the multi-model
mean outperforms any individual model. Similar to Gleckler et al. (2008) and Fig. 9.7 of Flato
et al. (2013) produced with namelist_perfmetrics_CMIP5.xml.
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Figure 3. Left: Zonally averaged temperature profile difference between MPI-ESM-LR and the
ERA-Interim reanalysis data with masked non-significant values. MPI-ESM-LR has generally
small biases in the troposphere (< 1-2K), but a cold bias in the tropopause region that is
particularly strong in the extratropical lower stratosphere. This is a systematic bias present in
many of the CMIP3 and CCMVal models (IPCC, 2007; SPARC-CCMVal, 2010), related to an
overestimation of the water vapour concentrations in that region. Right: Taylor diagram for tem-
perature at 850 hPa for CMIP5 models compared to ERA-Interim (reference observation-based
data set) and NCEP (alternate observation-based data set) showing a very high correlation
or R > 0.98 with the reanalyses demonstrating very good performance in this quantity. Both
figures produced with namelist_perfmetrics_ CMIP5.xml.
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Figure 4. Annual-mean surface air temperature (upper row) and precipitation rate (mm day'1)
for the period 1980-2005. The left panels show the multi-model mean and the right panels the
bias as the difference between the CMIP5 multi-model mean and the climatology from ERA-
Interim (Dee et al., 2011) and the Global Precipitation Climatology Project (Adler et al., 2003)
for surface air temperature and precipitation rate, respectively. The multi-model mean near-
surface temperature agrees with ERA-Interim mostly within £2 °C. Larger biases can be seen
in regions with sharp gradients in temperature, for example in areas with high topography such
as the Himalaya, the sea ice edge in the North Atlantic, and over the coastal upwelling regions
in the subtropical oceans. Biases in the simulated multi-model mean precipitation include too
low precipitation along the equator in the western Pacific and too high precipitation amounts
in the tropics south of the equator. Similar to Figs. 9.2 and 9.4 of Flato et al. (2013) and with
namelist_flato13ipcc.xml.
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Figure 5. Monsoon precipitation intensity (upper panels) and monsoon precipitation domain
(lower panels) for TRMM and an example of deviations from observations from three CMIP5
models (EC-Earth, HadGEM2-ES, and GFDL-ESM2M). Models have difficulties representing
the eastward extent of the monsoon domain over the South China Sea and western Pacific,
and several models (e.g., HadGEM2-ES) underestimate the latitudinal extent of most of the
monsoon regions. The monsoon precipitation intensity tends to be underestimated in the South
Asian, East Asian and Australian monsoon regions while in the African and American monsoon
regions the sign of the intensity bias varies between models. Similar to Fig. 9.32 of Flato et al.
(2013) and produced with namelist_ SAMonsoon.xml.
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Figure 6. Seasonal cycle of monthly rainfall averaged over the Indian region (5-30° N, 65—
95° E) for a range of CMIP5 coupled models (upper panel) and their AMIP counterparts (lower
panel), averaged over available years (models: 1980-2004, observations: 1998-2009). The
grey area in each panel indicates standard deviation from the model mean, to indicate the
spread between models (observations/reanalyses are not included in this spread). These illus-
trate the range of rainfall simulated particularly in AMIP experiments where there is no feedback
between precipitation and SST biases that might moderate the rainfall biases (Bollasina and
Ming, 2013; Levine et al., 2013). Some of the CMIP5 coupled models (e.g., HadGEM2-ES,
IPSL-CM5A-MR) show a delayed monsoon onset that is not apparent in their AMIP configura-
tions. This is related to cold SST biases in the Arabian Sea which develop during boreal winter
and spring (Levine et al., 2013). Produced with namelist_ SAMonsoon.xmi.
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Figure 7. Precipitation (mm day™") averaged over 10° W-10°E for the JJAS season for the
years 1979-2005 for CMIP5 historical simulations (left) and 1979—2008 for CMIP5 AMIP simu-
lations (right) compared to 1998—2008 for TRMM 3B43 Version 7 data set. The results illustrate
the inter-model spread in the mean position and intensity of the WAM among the CMIP5 mod-
els. The spread is slightly reduced in AMIP simulations, as the warm SST bias in the equatorial
Atlantic is removed. The WAM mean structure, however, is not captured by many models. Pro-
duced with namelist_ WAMonsoon.xml.
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Figure 8. The PDO as simulated by 41 CMIP5 models (individual panels labelled by model
name) and observations (upper left panel) for the historical period 1900—-2005. These patterns
show the global SST anomalies (°C) associated with a one standard deviation change in the
normalized principal component (PC) time series. The percent variance accounted by the PDO
is given in the upper right of each panel. The PDO is defined as the leading empirical orthog-
onal function of monthly SST anomalies (minus the global mean SST) over the North Pacific
(20-70°N, 110° E-100° W). The global patterns ("C) are formed by regressing monthly SST
anomalies at each grid point onto the PC time series. Most CMIP5 models show realistic pat-
terns in the North Pacific. However, linkages with the tropics and the tropical Pacific in particular,
vary across models. The lack of a strong tropical expression of the PDO is a major shortcoming
in many CMIP5 models (Flato et al., 2013). Figure produced with namelist_CVDP.xml.
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Figure 9. Long-term annual mean Atlantic Meridional Overturning Streamfunction (AMOC; Sv)
as simulated by 15 CMIP5 models (individual panels labelled by model name) for the historical
period 1900-2005. MOC annual averages are formed, weighted by the cosine of the latitude
and by the depth of the vertical layer, and then the data is masked by setting all those areas to
missing where the variance is less than 1 x 107°. The figure shows that there is a wide spread
among the CMIP5 models, with maximal AMOC strength ranging from ~ 13 Sv (CanESM2) to
over ~28Sv (NorESM1), while the models agree generally well on the position of maximal
AMOC strength. Figure produced with namelist_ CVDP.xml.
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Figure 10. May—October wavenumber-frequency spectra of 10°S—10°N averaged precipita-
tion (mm? day~?) for GPCP-1DD, HadGEM-ES, MPI-ESM-LR and EC-EARTH. Individual May—
October spectra were calculated for each year and then averaged over all years of data. Only
the climatological seasonal cycle and time mean for each May—October segment were removed
before calculation of the spectra. The bandwidth is (180days)™'. The observed precipitation
shows the dominant MJO spatial scale is zonal wavenumber 1-3 at the 30—80 day frequency.
According to the definition, the positive frequency represent eastward propagation of the MJO.
Compared with observations, both HadGEM-ES and EC-EARTH models have difficulties sim-
ulating precipitation variability on MJO timescsales. Produced with namelist_mjo_daily.xml.
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Figure 11. Mean diurnal cycle of precipitation (mmh™") averaged over five summers (2004—
2008) over specific regions in the tropics (Sahel, West-Africa, Gulf of Guinea, India, Indian
Ocean, Amazonia, East-Equatorial Pacific and West-Equatorial Pacific) as observed by TRMM
3B42 V6 and as simulated by four CMIP5 models: CNRM-CM5, EC-Earth, HadGem2-A and
IPSL-CM5A. ESMs produce a too strong peak of rainfall around noon over land while the ob-
served precipitation maximum is weaker and delayed to 6 p.m. At the same time, most models
underestimate nocturnal precipitation. Over the ocean, the diurnal cycle of precipitation is flatter
but rainfall maximum usually occurs a few hours earlier than in observations during the night,
and the amplitude of oceanic precipitation shows large variations among models. Produced
with namelist_diurnal.xml.
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Figure 12. Climatological (1985-2005) annual-mean cloud radiative effects in Wm™2 for the
CMIP5 models against CERES EBAF (2001-2011) in wm™. Top row shows the shortwave
effect; middle row the longwave effect, and bottom row the net effect. Multi-model-mean biases
against CERES EBAF 2.6 are shown on the left, whereas the right panels show zonal averages
from CERES EBAF 2.6 (black), the individual CMIP5 models (thin grey lines), and the multi-
model mean (thick red line). The multi-model mean longwave CRE is overestimated in models,
particularly in the Pacific and Atlantic south of the inter-tropical convergence zone (ITCZ) and
in the South Pacific convergence zone (SPCZ). The longwave CRE is underestimated over
Central and South America as well as parts of Central Africa and southern Asia. The most
striking biases in the multi-model mean shortwave CRE are found in the stratocumulus regions
off the west coasts of North and South America, southern Africa, and Australia. Despite biases
in component cloud properties, simulated CRE is in quite good agreement with observations.
Reproducing Fig. 9.5 of Flato et al. (2013) and produced with namelist_flato13ipcc.nml.
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Figure 13. Cloud Regime Error Metric (CREM) from Williams and Webb (2009) applied to those
CMIP5 AMIP simulations with the required data in the archive. The results show that MIROC5
is the best performing model on this metric with HadGEM2-A also having a score comparable
to the observational uncertainty. Other models are slightly worse and IPSL-CM5A-LR is notably
deficient on this metric. An advantage of the metric is that its components can be decomposed
to investigate the reasons for poor performance. This requires extra print statements compared
to the default code, but when this is done for IPSL-CM5A-LR it is found that a number of the
regimes are too reflective (e.g. extra-tropical shallow cumulus and transition regimes) along
with the stratocumulus regime being simulated too frequently at the expense of some of the
other regimes. Produced with namelist_williams09climdyn_CREM.xm|.
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Figure 14. Annual-mean difference between EC-Earth/NEMO and ERA-Interim sea surface
temperatures (a), the World Ocean Atlas sea surface salinity (b), and the Argo float observa-
tions for ocean mixed layer thickness (c¢), showing that in the Southern Ocean SSTs in EC-Earth
are too high, sea surface salinity too fresh, and the mixed layer too shallow. The other available
diagnostics of the namelist_SouthernOcean.nml help in understanding these biases. Vertical
sections of temperature (d) and salinity differences (e) reveal that the SST bias is mainly an
austral summer problem, but also that vertical mixing is not able to penetrate a year-round
existing warm layer below 80 m depth.
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Figure 15. Upper panel: Covariability between incoming surface short wave radiation (rsds)
and total cloud cover (clt). Lower panel: Fraction occurrence histograms of binned cloud cover:
Observations are CERES-EBAF (radiation) and CloudSat (cloud cover). The CanESM2 model
from the CMIP5 archive is shown as an example for comparison to observations (the namelists
runs on all CMIP5 models). CanESM2 generally reproduces the observed slope of rsds as
a function of clt, although there is a systematic positive bias in the amount of shortwave ra-
diation reaching the surface for most cloud cover values. A positive bias is also seen in the
CanESM2 histogram of cloud occurrence, with a strong peak in seasonal cloud fraction of 90 %
in most seasons. Produced with namelist_SouthernHemisphere.xmi.
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Figure 16. Latitude cross-section of seasonal and zonally averaged values of SSTs and pre-
cipitation for the tropical Pacific (zonal averages are made between 120° E and 100° W). Upper
panel shows absolute values of SST and precipitation, lower panel shows values normalized
by their respective tropical mean value (20°N to 20° S) The figure shows that HadGEM2-ES
simulates a double ITCZ in the equatorial Pacific with excessive precipitation south of the
equator. This bias is accompanied by off equatorial warm biases in normalized SST in both
hemispheres and a relative cold bias along the equator. The IPSL-CM5A-MR and MPI-ESM-LR
models better capture the SST and precipitation distributions in the tropical Pacific. Produced
with namelist_TropicalVariability.xml.
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Figure 17. Timeseries (1960—2005) of September mean Arctic sea-ice extent from the CMIP5
historical simulations. The CMIP5 ensemble mean is highlighted in dark red and the individual
ensemble members of each model (coloured lines) are shown in different linestyles. The model
results are compared to observations from the NSIDC (1978-2011, black solid line) and the
Hadley Centre Sea ice and Sea Surface Temperature (HadISST, 1978-2011, black dashed
line). Consistent with observations, most CMIP5 models show a downward trend in sea ice
extent over the satellite era. The range in simulated sea ice is however quite large (between 3.2
and 12.1 x 10° km? at the beginning of the timeseries). The multi-model-mean lies below the
observations throughout the entire timeseries, especially after 1978, when satellite observation
became available. Similar to upper left panel of Fig. 9.24 of Flato et al. (2013) and produced
with namelist_Sealce.nml.
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Jul-diff of Evapotranspiration

LandFiux-Eval observation CanESM2 historical - REF CSIRO-MK3-6-0 historical - REF
yrs: 1980-2004 mean: 0.16 rmse: 0.92 yrs: 1980-2004 mean: 0.16 rmse: 1.16

EC-EARTH historical - REF CNRM-CMS historical - REF HadGEM2-ES historical - REF
yrs: 1980-2004 mean: 0.40 rmse: 1.07 yrs: 1380-2004 mean: 0.58 rmse: 1.20 yrs: 1980-2004 mean: 0.71 rmse: 1.31

GFDL-ESM2M historical - REF MIROCS historical - REF MPLESM-LR historical - REF
yrs: 1980-2004 mean: 0.77 rmse: 1.53 yrs: 19802004 mean: 0.74 rmse: 1.26 yrs: 1960-2004 mean: 0.37 rmse: 0 92
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Figure 18. Bias in evapotranspiration (mmd™") for July in a subset of CMIP5 models in refer-
ence to the LandFlux-EVAL evapotranspiration product. The global mean bias is also indicated
for each model as well as the RMSE. The comparison reveals the existence of biases in July
evapotranspiration for a subset of CMIP5 models. All models overestimate evapotranspiration
in summer, especially in Europe, Africa, China, Australia, Western North America, and parts
of Amazonia. Biases of the opposite sign (underestimation in evapotranspiration) can be seen
in some other regions of the world, notably over parts of the tropics. For most regions, there
is a clear correlation between biases in evapotranspiration and precipitation (see precipitation
bias in Fig. 4). Produced with namelist_Evapotransport.xml.
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Figure 19. Biases in runoff coefficient (runoff/precipitation) and precipitation for major catch-
ments of the globe. The MPI-ESM 1.1 historical simnulation is used as an example. Even
though positive and negative precipitation biases exist for MPI-ESM 1.1 in the various catch-
ment areas, the bias in the runoff coefficient is usually negative. This implies that the fraction of
evapotranspiration generally tends to be overestimated by the model independently of whether
precipitation has a positive or negative bias. Produced with namelist_runoff_et.xml.
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Figure 20. Relative space—-time RMSE calculated from the 1986—-2005 climatological seasonal
cycle of the CMIP5 historical simulations over different sub-domains for NBP, LAI, GPP, precip-
itation, and near-surface air temperature. The RMSE has been normalized with the maximum
RMSE in order to have a skill score ranging between 0 and 1. A score of 0 indicates poor
performance of models reproducing the phase and amplitude of the reference mean annual
cycle, while a perfect score is equal to 1. The comparison suggests that there is no clearly
superior model for all variables. All models have significant problems in representing some key
biogeochemical variables such as NBP and LAI, with largest errors in the tropics mainly be-
cause of a too weak seasonality. Similar to Fig. 18 of Anav et al. (2013) and reproduced with
namelist_perfmetrics_ CMIP5.xml.
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Figure 21. Error-bar plot showing the 1986—-2005 CMIP5 integrated NBP (left) and ocean atmo-
sphere carbon fluxes (fgco2, right) over the land and ocean subdomains, respectively. Positive
values in NBP and fgco2 correspond to land and ocean uptake, respectively, and vertical bars
are computed considering the interannual variation. The models are compared to JMA inver-
sion estimates. The models’ range is very large and results show that ESMs fail to accurately
reproduce the global net land CO, flux (NBP, left). In general, ESMs simulate global ocean—
atmosphere CO, fluxes (fgco2, right) that are comparable to the inversions and GCP estimates.
At the hemispheric scale, there is no clear bias common in most ESMs, except in the tropics
where models simulate a lower CO, source than that estimated by the inversion. Reproducing
Figs. 6 and 14 of Anav et al. (2013) with namelist_anav13jclim.xml.
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ref ETH-SOM-FFN BNU-ESM
yrs: 109982011

Figure 22. Inter-annual variability in de-trended annual mean surface pCO, (patm) for the pe-
riod 1998—-2011 from an observation-based reference product (ETH-SOM-FFN; upper left) and
three CMIP5 models. The spatial structure of inter-annual variability differs between individual
CMIP5 ESMs, however both BNU-ESM and GFDL-ESM2M are able to reproduce pronounced
(> 10 patm) variability in surface ocean pCO, within the Equatorial Pacific, primarily associated
with ENSO variability (Rodenbeck et al., 2014). Produced with namelist_GlobalOcean.xml.
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Figure 23. Timeseries of global oceanic mean aerosol optical depth (AOD) from individual
CMIP5 models’ historical (1850-2005) and RCP 4.5 (2006—2010) simulations, compared with
MODIS and ESACCI-AEROSOL satellite data. All models simulate a positive trend in AOD
starting around 1950. Some models also show distinct AOD peaks in response to major vol-
canic eruptions, e.g. El Chichon (1982) and Pinatubo (1991). The models simulate quite a wide
range of AODs, between 0.05 and 0.20 in 2010, which largely deviates from the observed
values from MODIS and ESACCI-AEROSOL. A significant difference, however, exist also be-
tween the two satellite data set (about 0.05), indicating an observational uncertainty. Similar to

IS BB S

Fig. 9.29 of Flato et al. (2013) and produced with namelist_aerosol.xml.
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Figure 24. Climatological mean annual mean tropospheric column ozone averaged between
2000 and 2005 from the CMIP5 historical simulations compared to MLS/OMI observations. The
values on top of each panel show the global (area-weighted) average, calculated after regrid-
ding the data to the horizontal grid of the model and ignoring the grid cells without available ob-
servational data. The comparison shows a high bias in tropospheric column ozone in the North-
ern Hemisphere and a low bias in the Southern Hemisphere in the CMIP5 multi-model mean.
Similar to Fig. 13 of Righi et al. (2015) and produced with namelist_righi15gmd_tropo3.xmi.
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Figure 25. Total column ozone time series for (a) annual global and (b) Antarctic October mean.
CMIP5 models are shown in coloured lines and the multi-model mean in thick black, their
standard deviation as grey shaded area, and observations from five different sources (black
symbols). The CMIP5 multi-model mean is in good agreement with observations, but significant
deviations exist for individual models with interactive chemistry. Based on Fig. 2 of Eyring et al.
(2013) and reproducing Fig. 9.10 of Flato et al. (2013), with namelist_eyring13jgr.xmli.
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Figure 26. (a) The carbon cycle-climate feedback (y,t) vs. the short-term sensitivity of atmo-
spheric CO, to interannual temperature variability (y,sy) in the tropics for CMIP5 models. The
red line shows the best fit line across the CMIP5 simulations and the vertical dashed lines
show the observed range of y,,y. (b) probability distribution function (PDF) for y ;. The solid
line is derived after applying the interannual variability (IAV) constraint to the models while the
dashed line is the prior PDF derived purely from the models before applying the 1AV constraint.
The results show a tight correlation between y,; and y,,, that enables the projections to be con-
strained with observations. The conditional PDF sharpens the range of y,7 to —44+ 14 GtCK™"
compared to the unconditional PDF which is (-49 + 40 GtCK™"). Similar to Fig. 9.45 of Flato
et al. (2013) and reproducing the CMIP5 model results from Fig. 5 of (Wenzel et al., 2014) with
namelist_wenzel14jgr.xml.
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Figure 27. Schematic overview of the coupling of the ESMValTool to the ESGF.
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